首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title molecular complex, [Cu4Cl6O(2‐EtTz)4], where 2‐EtTz is 2‐ethyl­tetrazole (C3H6N4), the central O atom is located on the symmetry site and is tetrahedrally coordinated to four Cu atoms, with Cu—O distances of 1.8966 (4) Å. A very slight distortion of Cu4O from a regular tetrahedron is observed [two Cu—O—Cu angles are 108.76 (3)° and four others are 109.828 (13)°]. Each Cu atom is connected to three others via the Cl atoms, forming a slightly distorted Cl octahedron around the O atom, with O⋯Cl distances of 2.9265 (7) Å for Cl atoms lying on the twofold axis and 2.9441 (13) Å for those in general positions. The Cu atom has a distorted trigonal–bipyramidal environment, with three Cl atoms in the equatorial plane, and with the N atom of the 2‐ethyl­tetrazole ligand and the μ4‐O atom in axial positions. The Cu atom is displaced out of the equatorial plane by ca 0.91 Å towards the coordinated N atom of the 2‐­ethyl­tetrazole ligand.  相似文献   

2.
In the title polymeric heterometallic compound, {[Cu3Gd(C6H4NO2)3Cl3(H2O)2]·0.5H2O}n, comprising copper(I) and gadolinium(III) cations bridged by nicotinate (nic) ligands and chloride anions, the GdIII centers display a bicapped trigonal prismatic geometry, defined by six carboxylate O atoms and two water molecules. For copper(I), one Cu center is three‐coordinated by three chloride ions and displays a trigonal–planar geometry; the other two Cu centers are four‐coordinated and display a very distorted tetrahedral geometry. The chloride anions act in μ2‐ and μ3‐bridging modes, linking the CuI ions into an infinite chain. The nic ligand exhibits a tridentate coordination mode, with the carboxylate O atoms linking to two GdIII ions and the N atom linking to one CuI ion. Thus, a novel three‐dimensional heterometallic coordination polymer is constructed from Gd–carboxylate subunits and Cu—Cl chains. In addition, intra‐ and intermolecular O—H...O and O—H...Cl hydrogen bonds are also observed within the three‐dimensional structure. Topologically, the framework represents an unusual 3,6‐connected (4.82)3(410.65) net.  相似文献   

3.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

4.
The title compound, [Cu2(C2H3O2)4(C11H9N)2] or [Cu2(MeCO2)4(phpy)2] (phpy is 4‐phenyl­pyridine), consists of centrosymmetric dimers in which the CuII atoms display a square‐pyramidal CuO4N coordination, with four acetate O atoms in the basal plane [Cu—O 1.975 (3)–1.987 (3) Å] and the phpy N atom in the apical position [Cu—N 2.150 (3) Å]. The Cu atoms are 2.654 (1) Å apart and are bridged by four acetate groups. The discrete dimers are extended into a three‐dimensional supramolecular array through intermolecular π–π‐stacking interactions.  相似文献   

5.
In the title compound, [Cu(C14H18O4)(H2O)]n, each CuII atom bonds to four O atoms of four adamantanediacetate (ada) ligands in equatorial positions and an O atom from a water mol­ecule in the apical position. Two adjacent CuII atoms form a paddle‐wheel unit with four ada ligands. The distance between the two Cu atoms is 2.5977 (3) Å. A crystallographic inversion center is located at the center of the Cu–Cu core. Each Cu2(ada)4 paddle‐wheel further bonds to four adjacent identical paddle‐wheel units, generating a two‐dimensional layered structure of Cu(ada)(H2O) with a 44 topology.  相似文献   

6.
In the title dinuclear CuII compound, [Cu2Cl3(C19H19N3)3]ClO4·0.5H2O, the coordination geometry around the Cu atoms is square pyramidal, with the bridging Cl atom at the apical positions. The Cu—Cl—Cu angle is 136.9 (1)° and the Cu?Cu distance is 4.961 (1) Å.  相似文献   

7.
In the title complex, {[Cu(C6H5O3)Cl(H2O)]·H2O}n, the CuII atom has a deformed square‐pyramidal coordination geometry formed by two O atoms of the maltolate ligand, two bridging Cl atoms and the coordinated water O atom. The Cu atoms are bridged by Cl atoms to form a polymeric chain. The deprotonated hydroxyl and ketone O atoms of the maltolate ligand form a five‐membered chelate ring with the Cu atom. Stacking interactions and hydrogen bonds exist in the crystal.  相似文献   

8.
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octahedral environment. One CuII centre is coordinated by two bridging 4,4′‐bipyridine (4,4′‐bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4′‐bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane‐1,2‐diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1–Cu2–Cu1–Cu2... chains. Adjacent chains are further bridged by 4,4′‐bipy ligands, which are also located on the twofold axis, resulting in a two‐dimensional layered polymer. In the crystal structure, extensive O—H...O hydrogen‐bonding interactions between water molecules, ethane‐1,2‐diol molecules and sulfate anions lead to the formation of a three‐dimensional supramolecular network structure.  相似文献   

9.
In the title compound, [Cu2(C19H24N2O4)2(H2O)2]·2H2O, the asymmetric unit consists of one half of the bis{μ‐6,6′‐dimethoxy‐2,2′‐[propane‐1,2‐diylbis(iminomethylene)]diphenolato}bis[aquacopper(II)] complex and two water molecules. Two CuII centres are bridged through a pair of phenolate groups, resulting in a complex with a centrosymmetric structure, with the centre of inversion at the middle of the Cu2O2 plane. The Cu atoms are in a slightly distorted square‐pyramidal coordination environment (τ = 0.07). The average equatorial Cu—O bond length and the axial Cu—O bond length are 1.928 (3) and 2.486 (3) Å, respectively. The Cu—O(water) bond length is 2.865 (4) Å, so the compound could be described as having a weakly coordinating water molecule at each CuII ion and two solvent water molecules per dimetallic unit. The Cu...Cu distance and Cu—O—Cu angle are 3.0901 (10) Å and 87.56 (10)°, respectively. The molecules are linked into a sheet by O—H...O and C—H...O hydrogen bonds parallel to the [001] plane.  相似文献   

10.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

11.
The title compound, [Cu4(C7H4ClO2)4(C6H6NO)4], consists of isolated tetranuclear clusters, where the Cu2+ cations are five‐ and sixfold coordinated by O atoms from the 4‐chlorobenzoate anions and by pyridine N and methanolate O atoms from bidentate 2‐pyridylmethanolate ligands. While three Cu atoms are six‐coordinated by an NO5 donor set forming distorted octahedra, the fourth Cu atom is five‐coordinated by an NO4 donor set forming a distorted tetragonal–pyramidal coordination around the Cu atom. The nucleus is a deformed cubane‐like Cu4O4 structure, with Cu...Cu distances in the range 3.0266 (11)–3.5144 (13) Å.  相似文献   

12.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

13.
The title complex, {[Cu2(C8H4O4)2(C3H4N2)4(H2O)]·H2O}n, is a three‐dimensional polymer formed through bridging by phthalate dianions of two different CuII cations and a network of O(N)—H⋯O hydrogen bonds. The Cu—O and Cu—N inter­action distances are in the ranges 2.0020 (16)–2.4835 (17) and 1.968 (2)–1.9855 (19) Å, respectively. The structure is composed of alternating polymer chains parallel to the c axis, with a shortest Cu⋯Cu distance of 6.3000 (5) Å.  相似文献   

14.
The title complex, [CuCl(C4H8OS)]n, contains infinite spiral (CuS)n chains linked by bridging Cl atoms into layers. The Cl atoms do not form polymeric fragments with CuI, but combine into isolated centrosymmetric Cu2Cl2 units. The compound is non‐isomorphous with the Br‐containing analogue, which contains Cu8S8 rings linked by Br atoms into chains. The O atom of the 1,4‐oxathiane mol­ecule does not realize its coordination abilities in the known copper(I)–halide complexes, while in copper(II)–halide complexes, oxathiane is coordinated via the S and O atoms. This falls into a pattern of the preferred inter­actions, viz. weak acid (CuI atom) with weak base (S atom) and harder acid (CuII atom) with harder base (O atom).  相似文献   

15.
The asymmetric unit of the title compound, {[Cu(C4O4)(C6H6N2O)2(H2O)2]·2H2O}n, consists of one pyridine‐4‐carbox­amide (isonicotinamide or ina) ligand, one‐half of a squarate dianion, a coordinated aqua ligand and a solvent water mol­ecule. Both the CuII and the squarate ions are located on inversion centers. The CuII ions are octa­hedrally surrounded by four O atoms of two water mol­ecules and two squarate anions, and by two N atoms of the isonicotinamide ligands. The crystal structure contains chains of squarate‐1,3‐bridged CuII ions. These chains are held together by N—H⋯O and O—H⋯O inter­molecular hydrogen‐bond inter­actions, forming an extensive three‐dimensional network.  相似文献   

16.
The title compound, [Cu2(C14H23N5)2(CH3O)2](PF6)2, has a doubly methoxo‐bridged centrosymmetric copper dimer cation involving two tridentate bis­(pyrazolyl)­amine ligands. The geometry of each CuII atom is a distorted square pyramid with two N atoms of the pyrazole in bis­[2‐(3,5‐di­methyl‐1‐pyrazolyl)­ethyl]­amine (bpea) and two μ2‐bridging O atoms of the methoxo ligands forming the basal plane, and the amine N atom occupying the axial position. In the bridging plane, the Cu—O bond lengths are 1.940 (4) and 1.942 (4) Å, and the bond angles for O—Cu—O and Cu—O—Cu are 76.1 (2) and 103.9 (2)°, respectively. The Cu?Cu distance is 3.058 (1) Å. The central four‐membered ring lies on an inversion centre.  相似文献   

17.
The coordination mode of the dimethylmalonate ligand in the two title CuII complexes, {[Cu(C5H3O4)(H2O)]·H2O}n, (I), and [Cu(C5H3O4)(H2O)]n, (II), is the same, with chelated six‐membered, bis‐monodentate and bridging bonding modes. However, the coordination environment of the CuII atoms, the connectivity of their metal–organic frameworks and their hydrogen‐bonding interactions are different. Complex (I) has a perfect square‐pyramidal CuII environment with the aqua ligand in the apical position, and only one type of square grid consisting of CuII atoms linked via carboxylate bridges to three dimethylmalonate ligands, with weak hydrogen‐bond interactions within and between its two‐dimensional layers. Complex (II) has a coordination geometry that is closer to square pyramidal than trigonal bipyramidal for its CuII atoms with the aqua ligand now in the basal plane. Its two‐dimensional layer structure comprises two alternating grids, which involve two and four different dimethylmalonate anions, respectively. There are strong hydrogen bonds only within its layers.  相似文献   

18.
The two title dinuclear copper(II) complexes, [Cu2Cl4(C17H20Cl2N2)2], (I), and [Cu2Cl4(C19H22N2O4)2], (II), have similar coordination environments. In each complex, the asymmetric unit consists of one half‐molecule and the two copper centres are bridged by a pair of Cl atoms, resulting in complexes with centrosymmetric structures containing Cu(μ‐Cl)2Cu parallelogram cores; the Cu...Cu separations and Cu—Cl—Cu angles are 3.4285 (8) Å and 83.36 (3)°, respectively, for (I), and 3.565 (2) Å and 84.39 (7)° for (II). Each Cu atom is five‐coordinated and the coordination geometry around the Cu atom is best described as a distorted square‐pyramid with a τ value of 0.155 (3) for (I) and 0.092 (7) for (II). The apical Cu—Cl bond length is 2.852 (1) Å for (I) and 2.971 (2) Å for (II). The basal Cu—Cl and Cu—N average bonds lengths are 2.2673 (9) and 2.030 (2) Å, respectively, for (I), and 2.280 (2) and 2.038 (6) Å for (II). The molecules of (I) are linked by one C—H...Cl hydrogen bond into a complex [10] sheet. The molecules of (II) are linked by one C—H...Cl and one N—H...O hydrogen bond into a complex [100] sheet.  相似文献   

19.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

20.
The crystal structure of the title complex, {[Cu3(C2H3O2)2(OH)2(H2O)4](C10H6O6S2)}n, is built of infinite polymeric cationic {[Cu3(C2H3O2)2(H2O)4(OH)2]2+}n chains stretching along the a axis, with naphthalene‐1,5‐disulfonate (1,5‐nds) anions in between. One independent CuII cation and the 1,5‐nds anion occupy special positions on crystallographic inversion centres. Each CuII cation has an octa­hedral coordination environment formed by two carboxyl O atoms, two hydroxo O atoms and two water mol­ecules. The carboxyl­ate and hydroxo groups perform a bridging function, linking adjacent Cu atoms in the chain, with a shortest Cu⋯Cu distance of 2.990 (3) Å. The chains are further linked into a three‐dimensional supra­molecular framework via hydrogen‐bonding inter­actions involving the sulfonate groups of the 1,5‐­nds dianions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号