首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

2.
In the title compound, [Cu(C5H10NO2S2)(C18H15P)2]·C18H15P, the Cu atom is in a distorted tetrahedral coordination, with two tri­phenyl­phosphine P atoms and two S atoms from an N,N‐bis(2‐hydroxy­ethyl)­di­thio­carbamate ligand occupying the vertices. The crystal structure is characterized by alternate layers of complex and tri­phenyl­phosphine mol­ecules.  相似文献   

3.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

4.
In the title compound, [Pt(C18H15P)(C28H28P2S)]­(ClO4)2·­C3H6O or [Pt(PPh3)(PSP)](ClO4)2·CH3COCH3, where PSP is the potentially tridentate chelate ligand bis(2‐di­phenyl­phosphinoethyl) sulfide, all three donor groups of the PSP ligand are coordinated to the central Pt atom, with Pt—P = 2.310 (1) Å and Pt—S = 2.343 (1) Å. The fourth coordination site is occupied by the P donor of the tri­phenyl­phosphine ligand [Pt—P = 2.289 (1) Å]. The complex cation has exact mirror symmetry, with the S atom, the Pt atom and the P atom of the PPh3 ligand in the mirror plane. The Pt atom has a distorted square‐planar coordination geometry. A π–π interaction is present between the phenyl rings of the PPh3 ligand and the terminal –PPh2 group of the PSP chelate.  相似文献   

5.
Platinum antitumour agents, containing aromatic rings, which are used for targeting DNA in effective therapies for the treatment of cancer. We have synthesized the title metallocomplex with an aromatic ligand and determined its crystal structure. In many cases, complexes of platinum and other metals have a symmetrical structure. In contrast, the platinum(II) complex with pyridine and N‐(9‐anthracenylmethyl)‐1,2‐ethanediamine as ligands (systematic name: cis‐{N‐[(anthracen‐9‐yl)methyl]ethane‐1,2‐diamine‐κ2N ,N ′}bis(pyridine‐κN )platinum(II) dinitrate), [Pt(C5H5N)2(C17H18N2)](NO3)2, is asymmetric. Of the two pyridine ligands, only one is π‐stacked with anthracene, resulting in an asymmetric structure. Moreover, the angle of orientation of each pyridine ligand is variable. Further examination of the packing motif confirms an intermolecular edge‐to‐face interaction.  相似文献   

6.
The Re atom in [Re(C9H6N2)Cl3(C18H15P)] is octahedrally coordinated by three Cl atoms in facial positions, two N atoms from 8‐imido­quinoline (imq) and one P atom from tri­phenyl­phosphine. The Re—N(imido) distance [1.760 (9) and 1.772 (8) Å] for imq is very short and implies double‐bond character. The trans influence of the P atom is indicated. Intra‐ and intermolecular π–π interactions between the π‐rings in the complex are also observed.  相似文献   

7.
The organic ligands 4‐methyl‐1H‐imidazole and 2‐ethyl‐4‐methyl‐1H‐imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5‐methyl‐1H‐imidazole‐κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2‐ethyl‐5‐methyl‐1H‐imidazole‐κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2‐methyl‐1H‐imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square‐pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.  相似文献   

8.
The crystal structures of cis‐dichlorido(ethylamine‐κN)(piperidine‐κN)platinum(II), [PtCl2(C2H7N)(C5H11N)], (I), cis‐dichlorido(3‐methoxyaniline‐κN)(piperidine‐κN)platinum(II), [PtCl2(C5H11N)(C7H9NO)], (II), and cis‐dichlorido(piperidine‐κN)(quinoline‐κN)platinum(II), [PtCl2(C5H11N)(C9H7N)], (III), have been determined at 100 K in order to verify the influence of the nonpiperidine ligand on the geometry and crystal packing. The crystal packing is characterized by N—H...Cl hydrogen bonding, resulting in the formation of chains of molecules connected in a head‐to‐tail fashion. Hydrogen‐bonding interactions play a major role in the packing of (I), where the chains further aggregate into planes, but less so in the case of (II) and (III), where π–π stacking interactions are of greater importance.  相似文献   

9.
In two linkage isomers, bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐pyrimidine­trionato]‐C5,O4‐(ethyl­enedi­amine‐N,N′)platinum(II), [Pt(C6H7N2O3)2(C2H8N2)], (I), and bis[1,3‐di­methyl‐2,4,6(1H,3H,5H)‐py­rim­idine­tri­on­ato‐C5](ethyl­enediamine‐N,N′)­plati­num(II) di­hyd­rate, [Pt(C6H7N2O3)2(C2H8N2)]·2H2O, (II), crystal­lized from the same aqueous solution containing [Pt(en)(OH)2] and 1,3‐di­methyl­barbituric acid (Hdmbarb) in a 1:2 molar ratio, a pair of monodentate dmbarb? anions coordinate to the Pt atom at tetrahedral C atoms for (II), while one dmbarb? anion coordinates at the carbon and the other at a deprotonated enol oxy­gen for (I). The Pt—C distances in (I) and (II) are comparable: 2.112 (4) Å for (I), and 2.114 (4) and 2.117 (4) Å for (II).  相似文献   

10.
The crystal structure of the title compound, trans‐[PtI2(C6H12N3P)2], describes one of the few platinum(II) complexes containing two of the water‐soluble 1,3,5‐tri­aza‐7‐phosphaadamantane ligands reported to date. The complex crystallizes on an inversion centre with the most important bond lengths and angles being Pt—P 2.3128 (12) Å, Pt—I 2.6022 (6) Å, P—Pt—I 90.94 (3)° and P′—Pt—I 89.06 (3)°.  相似文献   

11.
The title PtII complexes, viz. (2,2′‐bi­pyridine‐κ2N,N′)[(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′]­platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C10H8N2)](PF6)2, and [(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′](1,10‐phenanthroline‐κ2N,N′)platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C12H8N2)](PF6)2, containing an aromatic α‐di­imine and a non‐planar di­amino­cyclo­hexane, both form a ladder‐type structure, which is constructed via loose π–π stacking on the α‐di­imine ligands and hydrogen bonding between the cyclic amines and the counter‐anions. In the former compound, there are two independent complex cations, both of which have a twofold axis through the Pt atom.  相似文献   

12.
The title complexes, [Pt(C4H7NO)2I2], (I), and [Pt(C4H9NO)2I2], (II), possess similar square‐planar coordination geometries with modest distortions from ideality. For (I), the cisL—Pt—L angles are in the range 87.0 (4)–94.2 (3)°, while the trans angles are 174.4 (3) and 176.4 (3)°. For (II), cisL—Pt—L are 86.1 (8)–94.2 (6)° and transL—Pt—L are 174.4 (6) and 177.4 (5)°. One 3,6‐di­hydro‐2H‐1,2‐oxazine ligand in (I) is rotated so that the N—O bond is out of the square plane by approximately 70°, while the N—C bond is only ca 20° out of the plane. The other oxazine ligand is rotated so that the N—C bond is about 80° out of the plane, while the N—O bond is out of the plane by approximately 24°. In (II), the 3,4,5,6‐tetra­hydro‐2H‐1,2‐oxazine ligands are also positioned with one having the N—O bond further out of the plane and the other having the N—C bond positioned in that fashion. Both ligands, however, are rotated approximately 90° compared with their positions in (I). In both complexes, this results in an unsymmetrical distortion of the I—Pt—N bond angles in which one is expanded and the other contracted. These features are compared to those of reported cis‐di­amine­di­iodo­platinum(II) complexes.  相似文献   

13.
Bis(8‐quinolinolato‐N,O)­platinum(II), [Pt(C9H6NO)2], (I), has a centrosymmetric planar structure with trans coordination. The molecules form an inclined π stack, with an interplanar spacing of 3.400 (6) Å. 8‐Hydroxy­quinolinium dichloro(8‐quinolinolato‐N,O)­platinate(II) tetrahydrate, (C9H8NO)[PtCl2(C9H6NO)]·4H2O, (II), is soluble in water and is regarded as the synthetic intermediate of the insoluble neutral compound (I). The uncoordinated 8‐hydroxy­quinolinium cations and the monoquinolinolate complexes form an alternating π stack. The origins of fluorescence and phosphorescence in (II) are assigned to the 8‐hydroxy­quinolinium cation and the monoquinolinolate–Pt complex, respectively.  相似文献   

14.
In the present redetermination of the complex cis‐tetra­carbonyl­bis­(tri­cyclo­hexyl­phosphine)molybdenum(0), (I), [Mo(C18H33P)2(CO)4] or cis‐{η1‐[P(C6H11)3]2}Mo(CO)4, the Mo atom has a distorted octahedral geometry with a large P—Mo—P angle of 104.8 (1)°. A strong trans influence on the carbonyls in (I) is seen in a shortening of the Mo—C and a lengthening of the C—O distances opposite the phosphines compared with those that are cis. This influence is greatly diminished in the complex penta­carbonyl­(tri­cyclo­hexyl­phosphine)­molyb­denum(0), (II), [Mo(C18H33P)(CO)5] or {η1‐[P(C6H11)3]}­Mo(CO)5, the core of which has a slightly distorted C4v geometry.  相似文献   

15.
The title compound, [Pt(C6H10NO2)(C5H14N2)]2(SO4), crystallizes with two cations in the asymmetric unit. The two complex cations, which have a square‐planar PtII coordination, are chemically identical but differ slightly in the conformations of their amine groups. A neutral complex, viz. (2,2‐di­methyl‐1,3‐propane­di­amine‐κ2N,N′)bis(2‐piperidine­carb­oxyl­ato‐κN)platinum(II), is shown to form in solution and to change rapidly into the title compound.  相似文献   

16.
The novel PtII–dibenzo‐18‐crown‐6 (DB18C6) title complex, μ‐[tetrakis­(thio­cyanato‐S)­platinum(II)]‐N:N′‐bis{[2,5,8,­15,18,21‐hexa­oxa­tri­cyclo­[20.4.0.19,14]­hexa­cosa‐1(22),9(14),10,12,23,25‐hexaene‐κ6O]­potassium(I)}, [K(C20H24O6)]2[Pt(SCN)4], has been isolated and characterized by X‐ray diffraction analysis. The structure analysis shows that the complex displays a quasi‐one‐dimensional infinite chain of two [K(DB18C6)]+ complex cations and a [Pt(SCN)4]2? anion, bridged by K+?π interactions between adjacent [K(DB18C6)]+ units.  相似文献   

17.
In the two ruthenium(II)–porphyrin–carbene complexes ­(di­benzoyl­carbenyl‐κC)(pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)­ruthenium(II), [Ru(C15H10O2)(C5H5N)(C48H36N4)], (I), and (pyridine‐κN)(5,10,15,20‐tetra‐p‐tolyl­porphyrinato‐κ4N)[bis(3‐tri­fluoro­methyl­phenyl)­carbenyl‐κC]­ruthenium(II), [Ru(C15H8F6)(C5H5N)(C48H36N4)], (II), the pyridine ligand coordinates to the octahedral Ru atom trans with respect to the carbene ligand. The C(carbene)—Ru—N(pyridine) bonds in (I) coincide with a crystallographic twofold axis. The Ru—C bond lengths of 1.877 (8) and 1.868 (3) Å in (I) and (II), respectively, are slightly longer than those of other ruthenium(II)–porphyrin–carbene complexes, owing to the trans influence of the pyridine ligands.  相似文献   

18.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

19.
The title cadmium(II) polymer, catena‐poly[[[bis­(4‐amino­pyridine‐κN)­aqua­cadmium(II)]‐μ‐1,4‐phenyl­enediacetato‐κ4O,O′:O′′,O′′′] dihydrate], {[Cd(C10H8O4)(C5H6N2)2(H2O)]·2H2O}n, comprises one‐dimensional wave‐like chains, in which the Cd atom is coordinated by 1,4‐phenyl­enediacetate and 4‐amino­pyridine molecules. The 1,4‐phenylenediacetate ligands lie about inversion centres. Extensive hydrogen‐bonding inter­actions between the chains lead to a three‐dimensional structure. Free water mol­ecules form chains in the structure.  相似文献   

20.
The structures of trans‐bis[2‐(amino­methyl)­pyridine‐κ2N,N′]­bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2‐(amino­ethyl)­pyridine‐κ2N,N′]bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa‐ and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N′‐bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N—H⋯O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak π–π stacking interactions between the sac ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号