首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the title compound, [Fe(C17H14P)2]2[Sb4Cl16]·C2H6O, the Fe atoms lie on inversion centres and the pairs of cyclopentadienyl rings are consequently in a fully staggered conformation. The centrosymmetric anionic clusters formed by [Sb4Cl16]4? are surrounded by the cations and are held together by weak C—H?Cl interactions. These formations stack along the a axis to form columns, and the columns are interconnected by another weak C—H?Cl interaction along the b axis.  相似文献   

2.
The 2,8‐di­hydroxy‐1,3,7,9‐tetra­methyl‐6,12‐di­hydro­di­pyrido[1,2‐a:1′,2′‐d]pyrazine­diyl­ium dication possesses 2/m symmetry and lies in the mirror plane together with a chloride anion and the water O atom. The dication also lies on an inversion centre, i.e. C16H20N2O22+·2Cl?·2H2O. Due to these symmetry constrictions the dication adopts an unexpected planar conformation. Molecules are linked by O—H?O and O—H?Cl hydrogen bonds to form chains, which are cross‐connected by C—H?Cl attractive interactions forming a complex three‐dimensional hydrogen‐bond network.  相似文献   

3.
The title compound, raloxifene hydro­chloride, C28H28NO4S+·Cl?, belongs to the benzo­thio­phene class of antiosteoporotic drugs. In the molecular cation, the 2‐phenol ring sustains a dihedral angle of 45.3 (1)° relative to the benzo­[b]­thio­phene system. The benzo­[b]­thio­phene and phenyl ring planes are twisted with respect to the carbonyl plane, with the smallest twist component occurring between the phenyl and carbonyl planes. The N atom bears the positive charge in the molecular cation and the piperidine ring adopts an almost perfect chair conformation. The Cl? anion is involved in the formation of N—H?Cl and O—H?Cl intermolecular hydrogen bonds, which lead to the formation of a layer of molecular cations.  相似文献   

4.
Isomorphous triclinic forms of di­chloro­[phthalocyaninato(2−)]­tin(IV), [Sn(C32H16N8)Cl2], and di­chloro­[phthalocyaninato(2−)]­ger­manium(IV), [Sn(C32H16N8)Cl2], and a monoclinic form of the latter have been obtained from the reaction of pure tin and germanium powder, respectively, with phthalo­nitrile under a stream of ICl vapour. All three crystal structures consist of centrosymmetric [SnPcCl2] and [GePcCl2] [Pc is phthalocyaninate(2−)] mol­ecules, which are separated but interacting. In the triclinic forms (Sn and Ge), the Pc macrocycles are not staggered but slipped, and in the monoclinic form (Ge), the mol­ecules are additionally inclined. In both cases, the central Sn or Ge atom is six‐coordinated by the four iso­indole N atoms of the Pc macrocyclic ligand and by two Cl atoms (located trans) into a tetragonal–bipyramidal structure. The arrangement of [SnPcCl2] and [GePcCl2] mol­ecules in the crystal structure is determined mainly by intermolecular C—H⃛Cl, π–π and van der Waals interactions.  相似文献   

5.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

6.
The primary geometry about the TeIV atom in the title compound, [TeCl2(C8H6Cl)(C3H5O)] or C11H11Cl3OTe, is a pseudo‐trigonal‐bipyramidal arrangement, with two Cl atoms in apical positions, and the lone pair of electrons and C atoms in the equatorial plane. The TeIV atom is involved in three secondary interactions, two intramolecular [Te?O = 2.842 (3) Å and Te?Cl3 = 3.209 (1) Å] and one intermolecular [Te?Cl = 3.637 (1) Å], the latter giving rise to a helical chain. These helices are linked by C—H?O interchain interactions.  相似文献   

7.
In the title compound, [Cu2Cl4(C6H10N8)2]n, the ligand has C2 symmetry, and the Cu and Cl atoms lie on a mirror plane. The coordination polyhedron of the Cu atom is a distorted square pyramid, with the basal positions occupied by two N atoms from two different ligands [Cu—N = 2.0407 (18) Å] and by the two Cl atoms [Cu—Cl = 2.2705 (8) and 2.2499 (9) Å], and the apical position occupied by a Cl atom [Cu—Cl = 2.8154 (9) Å] that belongs to the basal plane of a neighbouring Cu atom. The [CuCl2(C6H10N8)]2 units form infinite chains extending along the a axis via the Cl atoms. Intermolecular C—H⃛Cl contacts [C⃛Cl = 3.484 (2) Å] are also present in the chains. The chains are linked together by intermolecular C—H⃛N interactions [C⃛N = 3.314 (3) Å].  相似文献   

8.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

9.
A novel centrosymmetric chair‐like dimer, bis(2,2′‐bi­pyridine)‐1κ2N,N′;3κ2N,N′‐tetra‐μ‐chloro‐1:2κ2Cl;­2:3κ2Cl;­3:4κ2Cl;1:4κ2Cl‐tetra­copper(I), [Cu4Cl4­(C10­H8­N2)2], has been solvothermally synthesized and structurally characterized. The complex self‐assembles into a three‐dimensional network via C—H?Cl hydrogen bonds, π–π stacking and weak Cu?Cl electrostatic interactions.  相似文献   

10.
The Re atom in [Re(C9H6N2)Cl3(C18H15P)] is octahedrally coordinated by three Cl atoms in facial positions, two N atoms from 8‐imido­quinoline (imq) and one P atom from tri­phenyl­phosphine. The Re—N(imido) distance [1.760 (9) and 1.772 (8) Å] for imq is very short and implies double‐bond character. The trans influence of the P atom is indicated. Intra‐ and intermolecular π–π interactions between the π‐rings in the complex are also observed.  相似文献   

11.
The title compound, trans‐[RuIICl2(N1‐mepym)4] (mepym is 4‐methylpyrimidine, C5H6N2), obtained from the reaction of trans,cis,cis‐[RuIICl2(N1‐mepym)2(SbPh3)2] (Ph is phenyl) with excess mepym in ethanol, has fourfold crystallographic symmetry and has the four pyrimidine bases coordinated through N1 and arranged in a propeller‐like orientation. The Ru—N and Ru—Cl bond distances are 2.082 (2) and 2.400 (4) Å, respectively. The methyl group, and the N3 and Cl atoms are involved in intermolecular C—H?N and C—­H?Cl hydrogen‐bond interactions.  相似文献   

12.
Tetrakis­(chloro­methyl)­phospho­nium chloride monohydrate, C4H8Cl4P+·Cl?·H2O or P(CH2Cl)4+·Cl?·H2O, is the first crystal structure determination of a tetrakis­(halogeno­methyl)­phospho­nium compound to date. The only comparable structures known so far are of phospho­nium ions containing just one halogeno­methyl group. The solvent water mol­ecule interacts with the Cl? anion via hydrogen bonds, with O?Cl distances of 3.230 (2) and 3.309 (2) Å. The structure also contains several C—H?Cl? and C—H?O contacts, though with longer D?A distances [D?A 3.286 (3)–3.662 (2) Å] or bent D—H?A angles. For these reasons, the C—H?Cl? and C—H?O interactions should not be considered as strong hydrogen bonds.  相似文献   

13.
In the title compound, [SbCl2(C4H8N2S)2]Cl, the coordination around the Sb atom can be described as distorted pseudo‐octahedral. Both rings of the tri­methyl­ene­thio­urea ligands [alternatively 3,4,5,6‐tetrahydropyrimidine‐2(1H)‐thione] adopt an envel­ope conformation. The mol­ecules are connected into dimers in the ab plane by two intermolecular hydrogen bonds. The dimers are arranged into infinite one‐dimensional chains along the a axis as a result of the Cl? ions forming intermolecular hydrogen bonds with three NH groups.  相似文献   

14.
In the crystal structure of the title compound, [Cu3Cl6(C4H6N4)4]n, there are three Cu atoms, six Cl atoms and four 2‐allyl­tetrazole ligands in the asymmetric unit. The polyhedron of one Cu atom adopts a flattened octahedral geometry, with two 2‐allyl­tetrazole ligands in the axial positions [Cu—N4 = 1.990 (2) and 1.991 (2) Å] and four Cl atoms in the equatorial positions [Cu—Cl = 2.4331 (9)–2.5426 (9) Å]. The polyhedra of the other two Cu atoms have a square‐pyramidal geometry, with three basal sites occupied by Cl atoms [Cu—Cl = 2.2487 (9)–2.3163 (8) and 2.2569 (9)–2.3034 (9) Å] and one basal site occupied by a 2‐allyl­tetrazole ligand [Cu—N4 = 2.028 (2) and 2.013 (2) Å]. A Cl atom lies in the apical position of either pyramid [Cu—Cl = 2.8360 (10) and 2.8046 (9) Å]. The possibility of including the tetrazole N3 atoms in the coordination sphere of the two Cu atoms is discussed. Neighbouring copper polyhedra share their edges with Cl atoms to form one‐dimensional polymeric chains running along the a axis.  相似文献   

15.
The title salt, C18H22N5+·Cl?, is a member of a new series of lipophilic 4,6‐di­amino spiro‐s‐triazines which are potent in­hib­itors of di­hydro­folate reductase. The protonated triazine ring deviates from planarity, whereas the cyclo­hexane ring adopts a chair conformation. A rather unusual hydrogen‐bonding scheme exists in the crystal. There is a centrosymmetric arrangement involving two amino groups and two triazine ring N atoms, with graph‐set R(8) and an N?N distance of 3.098 (3) Å, flanked by two additional R(8) systems, involving two amino groups, a triazine ring N atom and a Cl? anion, with N?Cl distances in the range 3.179 (2)–3.278 (2) Å. Furthermore, the Cl? anion, the protonated triazine ring N atom and an amino group form a hydrogen‐bonding system with graph‐set R(6).  相似文献   

16.
The tri­chloro‐bridged dinuclear RuII complex tri‐μ‐chloro‐bis{[1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane‐κ3P,P′,P′′]ruthenium(II)} hexa­fluoro­phosphate ethanol solvate, [Ru2Cl3(tripod)2]PF6·C2H6O, containing the tripod [1,1,1‐tris­(di­phenyl­phosphino­methyl)­ethane, C41H39P3] ligand, was unexpectedly obtained from the reaction of [RuIIICl3(tripod)] with 1,4‐bis­(di­phenyl­phosphino)­butane (dppb), followed by pre­cipitation with NH4PF6. The magnetic moment of the compound at room temperature indicates that the dinuclear [Ru2(μ‐Cl)3(tripod)2]+ cation is diamagnetic. A single‐crystal X‐ray structure determination revealed that the two Ru atoms are bridged by the three Cl atoms. The coordination sphere of each Ru atom is completed by the three P atoms of a tripod ligand. The two P3Ru units are exactly eclipsed, while the bridging Cl atoms are staggered with respect to the six P atoms. The Ru⋯Ru distance is 3.3997 (7) Å and the mean Cl—Ru—Cl bond angle is 77.7°.  相似文献   

17.
The title compounds, bis­[1,2‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) di­chloro­methane solvate, [Hg(C2B10H11)2]·CH2Cl2, (I), and bis­[1,12‐dicarba‐closo‐dodecaboran(12)‐1‐yl]­mercury(II) tetra­hydro­furan solvate, [Hg(C2B10H11)2]·C4H8O, (II), were prepared in excellent yields using a robust synthetic procedure involving the reaction of HgCl2 with the appropriate monoli­thiocarborane. X‐Ray analysis of the products revealed strong interactions between the Hg atoms in both complexes and the respective lattice solvent. The distances between the HgII centers and the Cl atoms of the dichloromethane solvent molecule in the ortho‐carborane derivative, (I), and the O atom of the tetra­hydro­furan molecule in the para‐carborane complex, (II), are shorter than the sums of the van der Waals radii for Hg and Cl (3.53 Å), and Hg and O (3.13 Å), respectively, indicating moderately strong interactions. There are two crystallographically independent mol­ecules in the asymmetric unit of both compounds, which, in each case, are related by differing relative positions of the cages.  相似文献   

18.
The Hg atom in the title monomeric complex, di­chloro­bis(3‐imidazolium‐2‐thiol­ato‐S)­mercury(II), [HgCl2(C3H4N2S)2], is four‐coordinate having an irregular tetrahedral geometry composed of two Cl atoms [Hg—Cl 2.622 (2) and 2.663 (2) Å] and two thione S atoms [Hg—S 2.445 (2) and 2.462 (2) Å]. The monodentate thione ligand adopts a zwitterionic form and exists as the 3‐imidazolium‐2‐thiol­ate ion. The bond angle S1—Hg—S2 of 130.87 (8)° has the greatest deviation from ideal tetrahedral geometry. Intermolecular hydrogen bonds between two of the four N—H groups and one of the Cl atoms [3.232 (8) and 3.238 (7) Å] stabilize the crystal structure, while the other two N—H groups contribute through the formation of N—H?Cl intramolecular hydrogen bonds with the other Cl atom [3.121 (7) and 3.188 (7) Å].  相似文献   

19.
In the polymeric title complex, [CuCl2(C3H6N4)2]n, there are two ligands in the asymmetric unit. The Cu atom adopts an elongated octahedral geometry, with two 2‐ethyl­tetrazole ligands [Cu—N = 2.0037 (16) and 2.0136 (16) Å] and two Cl atoms [Cu—Cl = 2.2595 (6) and 2.2796 (6) Å] in equatorial positions. A Cl atom and a symmetry‐related 2‐ethyl­tetrazole mol­ecule [Cu—Cl = 2.8845 (8) Å and Cu—N = 2.851 (2) Å] lie in the axial positions of the octahedron. One of the two 2‐­ethyltetrazole ligands of the asymmetric unit exhibits bidentate binding to two Cu atoms through two N atoms of the tetrazole ring, whereas the other ligand is coordinated in a monodentate fashion via one tetrazole N atom. The Cu‐atom octahedra form dimer entities by sharing edges with equatorial and axial Cl atoms. The dimers are linked together through the 2‐ethyl­tetrazole ligands to form one‐dimensional polymeric zigzag chains extending along the b axis. The chains are connected into infinite layers parallel to the (10) plane via the 2‐ethyl­tetrazole ligands.  相似文献   

20.
The crystal structure of the title compound, [MnCl(C28H22N2O2)(C2H6O)], has been determined at 173 (2) K in the non‐centrosymmetric space group P212121. The asymmetric unit contains two molecular units. An intermolecular O—H⋯Cl hydrogen bond is formed between the OH group of an ethanol mol­ecule coordinated to the Mn atom and the coordinated Cl anion, and so polymeric chains of Mn‐containing fragments are formed [O—H⋯Cl = 3.1281 (16) and 3.1282 (15) Å]. The Mn atoms have a pseudo‐octahedral coordination sphere, with the four donor atoms of the Schiff base forming an equatorial plane [Mn—O distances are 1.8740 (13), 1.8717 (13), 1.8749 (13) and 1.8823 (13) Å, and Mn—N distances are 1.9868 (15), 1.9910 (14), 1.9828 (15) and 1.9979 (14) Å]. The axial positions are occupied by an ethanol mol­ecule [Mn—O distances of 2.3069 (15) and 2.3130 (15) Å] and a Cl ligand [Mn—Cl distances of 2.5732 (6) and 2.5509 (6) Å].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号