共查询到20条相似文献,搜索用时 0 毫秒
1.
An investigation on the effect of sulfonic group on solubility parameters and solubility behavior of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is presented. Sulfonated PPO (SPPO) was prepared using chlorosulfonic acid as a sulfonating agent. The structure of SPPO was confirmed by FT‐IR, and the ion exchange capacity (IEC) of SPPO was accurately determined by conductometric titration and 1H‐NMR. The three‐dimensional solubility parameters of SPPO defined by Hansen were estimated by group contribution, and this approach was used to obtain the three coordinates of a solubility parameter in terms of: a dispersion part δd, a polar part δp and a hydrogen bonding part δh. The theoretical predications of solubility behavior were characterized using “soluble sphere” in three‐dimensional space. The estimated results were in accordance with the solubility experiments in different solvents. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
2.
Chih‐Chiao Huang Ming‐Syun Yang Mong Liang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(20):5875-5886
A new class of thermosetting poly(2,6‐dimethyl‐1,4‐phenylene oxide)s containing pendant epoxide groups were synthesized and characterized. These new epoxy polymers were prepared through the bromination of poly(2,6‐dimethyl‐1,4‐phenylene oxide) in halogenated aromatic hydrocarbons followed by a Wittig reaction to yield vinyl‐substituted polymer derivatives. The treatment of the vinyl‐substituted polymers with m‐chloroperbenzoic acid led to the formation of epoxidized poly(2,6‐dimethyl‐1,4‐phenylene oxide) with variable pendant ratios, and the structures and properties were studied with nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography. The ratios of pendant functional groups were tailored for the polymer properties, and the results showed that the glass‐transition temperatures increased as the benzylic protons were replaced by bromo‐, vinyl‐, or epoxide‐functional groups, whereas the thermal stability decreased in comparison with the original polymer. Within a molar fraction of 20–50%, the degree of functionalization had little effect on the glass‐transition temperature; however, it correlated inversely with the thermal stability of each functionalized polymer. The thermal curing behavior of the epoxide‐functionalized polymer was enhanced by the increment of the pendant functionality, which resulted in a significant increase in the glass‐transition temperature as well as the thermal stability after the curing reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5875–5886, 2006 相似文献
3.
James E. Pickett 《Journal of polymer science. Part A, Polymer chemistry》2017,55(14):2318-2331
Reinvestigation of poly(2,6‐dimethyl‐1,4‐phenylene oxide) photodegradation at wavelengths > 290 nm shows that both methyl groups and aromatic rings are sites of oxidation with their relative rates dependent on exposure conditions, based on infrared spectroscopy. The methyl group loss is linear with exposure and apparently proceeds by direct abstraction of a benzylic hydrogen by oxygen. The aromatic ring loss and carbonyl growth in the IR spectra appear to be auto‐accelerating and seem to proceed by electron transfer to oxygen, either sensitized or through a direct reaction with oxygen, and recombination of the polymer radical cation and superoxide to result in oxygen addition to the ring. Molecular weight loss in solution occurs to a significant degree only in the presence of oxygen, even in the presence of a hydrogen‐donating solvent, indicating that aryl ether photolysis is not a major pathway. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2318–2331 相似文献
4.
Stéphane Jéol Françoise Fenouillot Alain Rousseau Christiane Monnet Karine Masenelli‐Varlot Jean‐François Briois 《Journal of polymer science. Part A, Polymer chemistry》2008,46(12):3985-3991
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008 相似文献
5.
The interfacial shear stress of toluene cast poly(2,6‐dimethyl‐1,4‐phenylene oxide) films has been studied as a function of annealing temperature. The surface topography of these films was studied by scanning probe microscopy following a single sliding pass. Casting from toluene results in a semicrystalline film with a rigid amorphous phase and containing a small amount of residual solvent that exhibits a higher interfacial shear stress than a high temperature annealed solvent‐free amorphous film. Films containing small amounts of toluene exhibit a wear pattern consisting of ripples oriented perpendicular to the sliding direction following a single sliding pass. These results support the notion that the interfacial shear stress is a function of the shear yield stress, and, that during sliding friction tensile stresses must form at the polymer surface. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1637–1643, 2009 相似文献
6.
Christopher G. Robertson Garth L. Wilkes 《Journal of Polymer Science.Polymer Physics》2001,39(17):2118-2129
We present a detailed investigation of the kinetics associated with the glass transitions of miscible blends composed of atactic polystyrene (a‐PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO). According to both dynamic mechanical analysis and differential scanning calorimetry, relaxation times displayed an enhanced temperature dependence (i.e., more fragile or more cooperative behavior) for the blends compared with additive behavior based on the responses of neat a‐PS and PPO. This is consistent with the notion that specific interactions between the blend components heighten the intermolecular cooperativity. The compositional dependence of fragility provided insight into physical aging results for the properties of volume and enthalpy. The combination of our research and a previously reported pressure–volume–temperature study by Zoller and Hoehn (J Polym Sci Polym Phys Ed 1982, 20, 1385) provided evidence that the observation of increased glassy densities for the blends compared with those of the pure polymers was kinetic in origin and was not a feature of the thermodynamics of miscibility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2118–2129, 2001 相似文献
7.
8.
In the present paper, the structure and conductivity for the complex of sulfonated poly(phenylene oxide) lithium (SPPOLi) and poly(ethylene oxide) (PEG) were studied. Glass transition temperature change determined by differential scanning calorimeter analysis desmonstrated that the two components had some compatibility. X-ray diffraction showed that PEG could decrease the regularity of SPPOLi to some extent. The compatibility and PEG's effect on the regularity may be due to the interaction between the lithium ions of SPPOLi and the oxygen atoms of PEG. Under polarization by electric field, the bands between lithium ions and sulfonation groups relaxed. Meanwhile, the complexation of oxygen atoms could enhance the dissociation of the polymeric lithium salts. Then lithium ions were transported in the process of alternate complexing and decomplexing. The action between lithium ions and oxygen atoms could explain the improvement on the conductivity of SPPOLi. 相似文献
9.
Catherine Bianchi Bruno Grassl Bernard Franois Christine Dagron‐Lartigau 《Journal of polymer science. Part A, Polymer chemistry》2005,43(19):4337-4350
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005 相似文献
10.
Y. Paul Handa Steeve Lampron Mark L. O'neill 《Journal of Polymer Science.Polymer Physics》1994,32(15):2549-2553
Change in the glass transition temperature, Tg, of poly(2,6-dimethyl phenylene oxide), PPO, due to the dissolved CO2 has been measured as a function of the gas pressure, p, using a high-pressure DSC cell. At 61.2 atm, the highest pressure studied, Tg is depressed by 31.6°C. The depression in Tg is found to be linear with pressure, with dTg/dp of ?0.5°C atm?1. The experimental results are in fair agreement with those calculated from a quasilattice solid-solution model for polymer-diluent systems. The present results, however, differ markedly from a recent investigation on PPO-CO2 system which reported a depression in Tg of 226°C at 60 atm and a dTg/dp of ?3.8°C atm?. © 1994 John Wiley & Sons, Inc. 相似文献
11.
Summary: A novel approach of in situ polymerization and in situ compatibilization was adopted to prepare poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) and polyamide 6 (PA6) nanoblends. Anionic ring‐opening polymerization of ε‐caprolactam was carried out in the presence of PPO, the chain of which bore p‐methoxyphenylpropionate (MPAA), acting as macroactivator to initiate PA6 chain growth from the PPO chain and form a graft copolymer of PPO and PA6 and pure PA6 simultaneously. The nanostructured PA6 dispersed phase in the PPO matrix could be achieved.
12.
Katsuhisa Mizoguchi Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2008,46(15):4949-4958
A negative‐type photosensitive poly(phenylene ether) (PSPPE) based on poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE), a novel crosslinker 4,4′‐methylene‐bis [2,6‐bis(methoxymethyl)phenol] (MBMP) having good compatibility with PPE, and diphenylidonium 9,10‐dimethoxy anthracene‐2‐sulfonate (DIAS) as a photoacid generator (PAG) has been developed. This resist consisting of PPE (73 wt %), MBMP (20 wt %) and DIAS (7 wt %) showed a high sensitivity (D0.5) of 58 mJ/cm2 and a contrast (γ0.5) of 9.5 when it was exposed to i‐line (365 nm wavelength light), postexposure baked at 145 °C for 10 min, and developed with toluene at 25 °C. A fine negative image featuring 6 μm line‐and‐space pattern was obtained on the film exposed to 300 mJ/cm2 of i‐line by a contact‐printed mode. The resulting polymer film cured at 300 °C for 1 h under nitrogen had a low dielectric constant (ε = 2.46) comparable to that of PPE and a higher Tg than that of PPE. In addition, the cured PSPPE film was pretty low water absorption (<0.05%) as same as PPE. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4949–4958, 2008 相似文献
13.
Li‐Min Wan Hong‐Xi Li Wei Zhao Hong‐Ye Ding Yang‐Yang Fang Pei‐Hong Ni Jian‐Ping Lang 《Journal of polymer science. Part A, Polymer chemistry》2012,50(23):4864-4870
In the presence of excess NaOH, reaction of Cu(OAc)2·H2O with equimolar ammonium calix[4]arene [H4L]I4 ( 1 , H4L = [5,11,17,23‐tetrakis(trimethylammonium)‐25,26,27,28‐tetrahydroxycalix[4]arene]) resulted in the formation of a mononuclear cationic Cu(II) complex [Cu(II)L(H2O)]I2 ( 2 ) in 43% yield. Complex 2 was characterized by elemental analysis, infrared (IR), and single crystal X‐ray diffraction. The Cu(II) atom in 2 is coordinated by four oxygen atoms of one L4? ligand and one O atom from one water molecule, forming a square pyramidal geometry. Complex 2 exhibited high catalytic activity in the oxidative polymerization of 2,6‐dimethylphenol using O2 as oxidizing agent in water under mild conditions. The selective polymerization produced poly(2,6‐dimethyl‐1,4‐phenylene oxide) in high yields with almost no diphenoquinone. The influence of the polymerization temperature, the time interval, the molar ratio of 2,6‐dimethylphenol/ 2 , the concentrations of sodium hydroxide, and sodium n‐dodecyl sulfate were examined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
14.
Hyun Hoon Song Tai‐Yon Cho D. P. Heberer T. D. Dang F. E. Arnold Loon‐Seng Tan 《Journal of Polymer Science.Polymer Physics》2001,39(5):559-565
Crystal‐packing, optical, and electrical properties of poly(2,5‐dihydroxy‐1,4‐phenylene benzobisthiazole) (DiOH‐PBZT) and copolymers of DiOH‐PBZT/poly(1,4‐phenylene‐benzobisthiazole) (PBZT) were examined. Intramolecular hydrogen bonds between the hydroxyl units and the neighboring nitrogen atoms, as evidenced by the IR spectra, led to the formation of a pseudoladder chain structure and changed the chain packing. The (200) and (010) planes were both affected by the copolymer composition, with the (200) plane spacing increasing from 5.895 to 6.482 Å and the (010) plane spacing decreasing from 3.539 to 3.404 Å with the transition from the unsubstituted PBZT homopolymer to the DiOH‐PBZT homopolymer. The cell dimensions of the copolymers were simple averages of those of the individual homopolymers, suggesting the isomorphic crystal structure formation of the two units. The c‐axis spacing, however, remained unchanged. The increase in the conjugation length of the copolymers as the dihydroxy content increased was confirmed by the bathochromic shift of the absorption band in the ultraviolet–visible spectra. The intrinsic conductivities of the copolymers were 3 orders of magnitude higher than that of the unsubstituted PBZT. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 559–565, 2001 相似文献
15.
Kazuya Matsumoto Yuji Shibasaki Shinji Ando Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2005,43(1):149-156
A chemically amplified photosensitive and thermosetting polymer based on poly[2,6‐di(3‐methyl‐2‐butenyl)phenol (15 mol %)‐co‐2,6‐dimethylphenol (85 mol %)] ( 3c ) and a photoacid generator [(5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile] was developed. Poly[2,6‐bis(3‐methyl‐2‐butenyl)phenol]‐co‐2,6‐dimethylphenol)] ( 3 ) with high molecular weights (number‐average molecular weight ~ 24,000) was prepared by the oxidative coupling copolymerization of 2,6‐di(3‐methyl‐2‐butenyl)phenol with 2,6‐dimethylphenol in the presence of copper(I) chloride and pyridine as the catalyst under a stream of oxygen. The structures of 3 were characterized with IR, 1H NMR, and 13C NMR spectroscopy. 3 was crosslinked by a thermal treatment at 300 °C for 1 h under N2. The 5% weight loss temperatures and glass‐transition temperatures of the cured copolymers reached around 420 °C in nitrogen and 300 °C, respectively. The average refractive index of the cured copolymer ( 3c ) film was 1.5452, from which the dielectric constant at 1 MHz was estimated to be 2.6. The resist showed a sensitivity of 35 mJ cm?2 and a contrast of 1.6 when it was exposed to 436‐nm light, postexposure‐baked at 145 °C for 5 min, and developed with toluene at 25 °C. A fine negative image featuring 8‐μm line‐and‐space patterns was obtained on a film exposed to 100 mJ cm?2 with 436‐nm light in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 149–156, 2005 相似文献
16.
Itaru Natori Shizue Natori Hiroyuki Sekikawa Hisaya Sato 《Journal of polymer science. Part A, Polymer chemistry》2008,46(15):5223-5231
Soluble poly(para‐phenylene) having a long polymer chain (more than six repeat units) was synthesized with a tert‐butyl end‐group (t‐PPP) and was found to have improved solubility and excellent optical properties. Poly(1,3‐cyclohexadiene) (PCHD) consisting of only 1,4‐cyclohexadiene (1,4‐CHD) units was synthesized with a tert‐butyl end‐group (t‐PCHD), and completely dehydrogenated to obtain t‐PPP. This end‐group effectively prevented the crystallization of t‐PPP, and polymers containing up to 16 repeat units were soluble in tetrahydrofuran. Soluble t‐PPP obtained had an ability to form a tough thin film prepared by spin‐coating method. Optical analyses of t‐PPP provided strong evidence for a linear polymer chain structure. A block copolymer of t‐PPP and a soluble polyphenylene (PPH) was then synthesized, and the excellent optical properties were retained by this block copolymer along with its solubility. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5223–5231, 2008 相似文献
17.
Patcharaporn Wutticharoenmongkol Pitt Supaphol Toemsak Srikhirin Teerakiat Kerdcharoen Tanakorn Osotchan 《Journal of Polymer Science.Polymer Physics》2005,43(14):1881-1891
Ultrafine polystyrene (PS)/poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene) (MEH‐PPV) fibers were successfully prepared by electrospinning of PS/MEH‐PPV solutions in chloroform, 1,2‐dichloroethane, and tetrahydrofuran (THF). Three concentrations of the solutions were prepared: 8.5, 16, and 23.5% (w/v), with the compositional weight ratios between PS and MEH‐PPV being 7.5:1, 15:1, and 22.5:1, respectively. Smooth fibers only observed from 23.5% (w/v) PS/MEH‐PPV solution in chloroform. Improvement in the electrospinnability of 8.5% (w/v) PS/MEH‐PPV solution in chloroform was achieved by addition of an organic salt, pyridinium formate (PF), or by addition of a minor solvent with a high dielectric constant value. The average diameters of the as‐spun PS/MEH‐PPV fibers were between 0.30 and 5.11 μm. Last, photoluminescence of 8.5% (w/v) solutions of PS/MEH‐PPV in a mixed solvent system of chloroform and 1,2‐dichloroethane of various volumetric compositions and the resulting as‐spun fibers was investigated and compared. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1881–1891, 2005 相似文献
18.
Ioakim K. Spiliopoulos John A. Mikroyannidis 《Journal of polymer science. Part A, Polymer chemistry》2002,40(15):2591-2600
Starting from the pyrylium salt and following a facile synthetic route, we synthesized and polymerized 4,4″‐diiodo‐2′,6′‐di[4‐(2′‐ethylhexyl)oxy]phenyl‐p‐terphenyl with p‐divinylbenzene or p‐diethynylbenzene. The resulting polymers had moderate molecular weights, were amorphous, and dissolved in tetrahydrofuran and chloroform, with glass‐transition temperatures of 120–131 °C. The polymers behaved as violet‐blue‐emitting materials with photoluminescence maxima around 420 and 450 nm in solution and in thin films, respectively. They possessed well‐defined chromophores resulting from steric interactions in the polymer chain. The photoluminescence quantum yields were up to 0.29. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2591–2600, 2002 相似文献
19.
Xiu‐Li Wang Ke‐Ke Yang Yu‐Zhong Wang Zhi‐Xuan Zhou Yong‐Dong Jin 《Journal of polymer science. Part A, Polymer chemistry》2004,42(14):3417-3422
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004 相似文献
20.
C. C. McDowell B. D. Freeman G. W. McNeely 《Journal of Polymer Science.Polymer Physics》1999,37(21):2973-2984
Interval sorption kinetics of acetone in solvent cast films of random poly(ethylene terephthalate)-co-(ethylene 2,6-naphthalate) (PET-co-PEN) are reported at 35°C and at acetone pressures ranging from 0 to 7.3 cm Hg. Polymer composition is varied systematically from 0% to 50% poly(ethylene 2,6-naphthalate). Equilibrium sorption is well described by the dual-mode sorption model. Interval sorption kinetics are described using a two-stage model that incorporates both Fickian diffusion and protracted polymer structural relaxation. The incorporation of low levels of PEN into PET significantly reduces the excess free volume associated with the glassy state and, for these interval acetone sorption experiments in ∼ 5 μm-thick films, decreases the fraction of acetone uptake controlled by penetrant-induced polymer structural relaxation. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2973–2984, 1999 相似文献