首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polymer blends of poly(vinylphenol) (PVPh) and poly(styrene‐co‐vinylphenol) with poly(p‐acetoxystyrene) (PAS) were prepared by solution casting from tetrahydrofuran solution. The thermal properties and hydrogen bonding of the blends were investigated by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy. Although hydrogen bonding existed between the PVPh and PAS segments, the experimental results indicated that PVPh is immiscible with PAS as shown by the existence of two glass‐transition temperatures over the entire composition range by DSC. This phenomenon is attributed to the strong self‐association of PVPh, intramolecular screening, and functional group accessibility effects of the PVPh/PAS blend system. However, the incorporation of an inert diluent moiety such as styrene into the PVPh chain renders the modified polymer to be miscible with PAS. Copolymers containing between 16 and 51 mol % vinylphenol were fully miscible with PAS according to DSC studies. These observed results were caused by the reduction of the strong self‐association of PVPh and the increase of the interassociation between PVPh and PAS segments with the incorporation of styrene on the PVPh chain. According to the Painter‐Coleman association model, the interassociation equilibrium constant of PVPh/PAS blends was determined by a model compound and polymer blend. Good correlation between these two methods was obtained after considering the intramolecular screening and functional group accessibility effect in the polymer blend. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1661–1672, 2002  相似文献   

2.
Thermosetting blends of a biodegradable poly(ethylene glycol)‐type epoxy resin (PEG‐ER) and poly(?‐caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass‐transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG‐ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG‐ER blends, that is, a PCL‐rich phase and a PEG‐ER crosslinked phase composed of an MAH‐cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase‐separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG‐ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2833–2843, 2004  相似文献   

3.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

4.
Hydrogen‐bonding interactions between bisphenol A (BPA) and two proton‐accepting polymers, poly(2‐vinylpyridine) (P2VPy) and poly(N‐vinyl‐2‐pyrrolidone) (PVP), were examined by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The Flory–Huggins interaction‐energy densities of BPA/P2VPy and BPA/PVP blends were determined by the melting point depression method. The interaction parameters for both BPA/P2VPy and BPA/PVP blend systems were negative, demonstrating the miscibility of BPA with P2VPy as well as PVP. The miscibility of ternary BPA/P2VPy/PVP blends was examined by DSC, optical observation, and solid‐state nuclear magnetic resonance spectroscopy. The experimental phase behavior of the ternary blend system agreed with the spinodal phase‐separation boundary calculated using the determined interaction‐energy densities. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1125–1134, 2002  相似文献   

5.
The miscibility and thermal properties of poly(N‐phenyl‐2‐hydroxytrimethylene amine)/poly(N‐vinyl pyrrolidone) (PHA/PVP) blends were examined by using differential scanning calorimetry (DSC), high‐resolution solid‐state nuclear magnetic resonance (NMR) techniques, and thermogravimetric analysis (TGA). It was found that PHA is miscible with PVP, as shown by the existence of a single composition‐dependent glass transition temperature (Tg) in the whole composition range. The DSC results, together with the 13C crosspolarization (CP)/magic angle spinning (MAS)/high‐power dipolar decoupling (DD) spectra of the blends, revealed that there exist rather strong intermolecular interactions between PHA and PVP. The increase in hydrogen bonding and in Tg of the blends was found to broaden the line width of CH—OH carbon resonance of PHA. The measurement of the relaxation time showed that the PHA/PVP blends are homogeneous at least on the scale of 1–2 nm. The proton spin‐lattice relaxation in both the laboratory frame and the rotating frame were studied as a function of the blend composition, and it was found that blending did not appreciably affect the spectral densities of motion (sub‐Tg relaxation) in the mid‐MHz and mid‐KHz frequency ranges. Thermogravimetric analysis showed that PHA has rather good thermal stability, and the thermal stability of the blend can be further improved with increasing PVP content. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 237–245, 1999  相似文献   

6.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

7.
Photocrosslinkable systems with thermally cleavable properties based on blends of poly(vinyl phenol) (PVP) and diepoxides were investigated. Thermally cleavable diepoxides as crosslinkers were prepared and characterized. As a thermally cleavable linkage, a tertiary ester moiety was incorporated into the crosslinker molecule. PVP/crosslinker blended films containing photoacid generators (PAGs) became insoluble in solvents after UV irradiation and subsequent post‐exposure‐bake (PEB) treatment. With a rise in the PEB temperature, the insoluble fraction of the irradiated films increased, passed through a maximum value, decreased, and increased again at elevated baking temperatures. The insolubilization profiles of the irradiated films were complicated and strongly dependent on the type of PAG used, the structure of the crosslinkers, and the PVP/crosslinker ratio. A mechanism for the thermal degradation was studied with Fourier transform infrared spectroscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3055–3062, 2002  相似文献   

8.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

9.
Molecular composites have been prepared by dispersing rigid‐rod molecules of ionically‐modified poly(p‐phenylene terephthalamide) (PPTA anion) in a polar poly(4‐vinylpyridine) (PVP) matrix. For concentrations up to 5 wt % of the rigid‐rod reinforcement, the resulting composites are transparent and possess a single glass transition temperature that increases with concentration of the PPTA anion. The mechanical properties of the molecular composites are found to increase with concentration and to attain maximum values at about 5 wt % of the PPTA anion. The enhancement in properties, and the miscibility induced between the two component polymers, is attributed to the development of specific interactions between the ionic groups of the PPTA anion and the polar units of the PVP matrix. When such interactions are not present, as in composites reinforced with non‐ionic PPTA, the samples are opaque and their properties are significantly reduced compared to those of the PPTA anion/PVP composites. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2201–2209, 1999  相似文献   

10.
Miscible blends of poly(2‐hydroxyethyl methacrylate) (PHEMA) and poly(1‐vinylimidazole) (PVI) have been formed in methanol/water (3/2 v/v) solutions. The incorporation of 0.6 wt % C60 into PHEMA leads to hydrophobic interactions and enhanced hydrogen bonding in miscible blends of [60]fullerenated poly(2‐hydroxyethyl methacrylate) (FPHEMA) with PVI. The incorporation of 2.6 wt % C60 into PHEMA increases its tendency to form interpolymer complexes with PVI. Interpolymer complexes are formed when FPHEMA samples containing 0.6, 1.4, and 2.6 wt % C60 are blended with poly(4‐vinylpyridine). The yields of the complexes increase with increasing C60 content in FPHEMA. Calorimetry and Fourier transform infrared spectroscopy studies suggest the importance of hydrophobic interactions in C60‐containing blends and complexes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4316–4327, 2002  相似文献   

11.
The miscibility behavior of poly(2‐ethyl‐2‐oxazoline) (PEOx)/poly(vinyl phenyl ketone hydrogenated) (PVPhKH) blends was studied for the entire range of compositions. Differential scanning calorimetry and thermomechanical analysis measurements showed that all the PEOx/PVPhKH blends studied had a single glass‐transition temperature (Tg). The natural tendency of PVPhKH to self‐associate through hydrogen bonding was modified by the presence of PEOx. Partial IR spectra of these blends suggested that amide groups in PEOx and hydroxyl groups in PVPhKH interacted through hydrogen bonding. This physical interaction had a positive influence on the phase behavior of PEOx/PVPhKH blends. The Kwei equation for Tg as a function of the blend composition was satisfactorily used to describe the experimental data. Pure‐component pressure–volume–temperature data were also reported for both PEOx and PVPhKH. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 636–645, 2004  相似文献   

12.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

13.
Positron annihilation lifetime spectroscopy and differential scanning calorimetry (DSC) measurements were performed for blends of polyacrylamide (PAM) and poly(ethylene glycol) (PEG) and blends of poly(dimethylacrylamide) (PDMAM) and PEG. The samples were prepared by codissolution in a concentration range of 0–100 wt % PEG. The thermal behavior, characterized by DSC measurements, showed similar variations of the glass‐transition temperatures (Tg's) with the PEG concentration for the two systems. Pure PAM and PDMAM presented Tg's of 188 and 111 °C, respectively. A relatively small and nearly linearly decreasing Tg was observed for the two systems in the range of 20–80 wt % PEG. PEG crystals were present in all blend compositions, and no melting point depression was observed. The thermal results pointed to the partial miscibility of the blends. The degree of crystallinity of PEG increased with increasing PEG concentration for the PDMAM/PEG systems. The ortho‐positronium lifetime (τ3) increased with increasing PEG concentration for both blends. However, the parameter of the ortho‐positronium formation probability (I3) decreased with the PEG concentration. The product τI3, which was proportional to the total free volume fraction, was approximately constant with the PEG concentration for PDMAM blends and increased with the PEG concentration for PAM systems. This result may be interpreted as a consequence of a more heterogeneous structure in PAM blends. Scanning electron microscopy micrographs of blends with 40 and 80 wt % PEG provided evidence of the regions associated with PEG crystallites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1493–1500, 2003  相似文献   

14.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

15.
An analysis by differential scanning calorimetry, modulated differential scanning calorimetry, and Fourier transform infrared spectroscopy (FTIR) indicates that blends of poly(vinyl phenyl ketone) (PVPhK) and poly(4‐vinyl phenol) (P4VPh) are miscible at ambient temperature. Miscibility, ascertained, is supported by the existence of a single glass transition for each composition of the PVPhK/P4VPh blends. The FTIR spectroscopy analysis demonstrates the formation of hydrogen bonds between carbonyl groups of PVPhK and hydroxyl groups of P4VPh. This specific interaction has a crucial role on the miscibility behavior of PVPhK/P4VPh blends. The evolution of the glass transition of the PVPhK, P4VPh, and its blends as a function of mixture composition shows negative deviations with to respect to the ideal mixing rule, and both Fox and Gordon–Taylor equations predict this behavior successfully. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2404–2411, 2006  相似文献   

16.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

17.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

18.
The structural characterization and transport properties of blends of a commercial high molecular weight poly(?‐caprolactone) with different amounts of a montmorillonite‐poly(?‐caprolactone) nanocomposite containing 30 wt % clay were studied. Two different vapors were used for the sorption and diffusion analysis—water as a hydrophilic permeant and dichloromethane as anorganic permeant—in the range of vapor activity between 0.2 and 0.8. The blends showed improved mechanical properties in terms of flexibility and drawability as compared with the starting nanocomposites. The permeability (P), calculated as the product of the sorption (S) and the zero‐concentration diffusion coefficient (D0), showed a strong dependence on the clay content in the blends. It greatly decreased on increasing the montmorillonite content for both vapors. This behavior was largely dominated by the diffusion parameters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1118–1124, 2002  相似文献   

19.
An amphiphilic poly(ethylene oxide)‐block‐poly(dimethylsiloxane) (PEO–PDMS) diblock copolymer was used to template a bisphenol A type epoxy resin (ER); nanostructured thermoset blends of ER and PEO–PDMS were prepared with 4,4′‐methylenedianiline (MDA) as the curing agent. The phase behavior, crystallization, hydrogen‐bonding interactions, and nanoscale structures were investigated with differential scanning calorimetry, Fourier transform infrared spectroscopy, transmission electron microscopy, and small‐angle X‐ray scattering. The uncured ER was miscible with the poly(ethylene oxide) block of PEO–PDMS, and the uncured blends were not macroscopically phase‐separated. Macroscopic phase separation took place in the MDA‐cured ER/PEO–PDMS blends containing 60–80 wt % PEO–PDMS diblock copolymer. However, the composition‐dependent nanostructures were formed in the cured blends with 10–50 wt % PEO–PDMS, which did not show macroscopic phase separation. The poly(dimethylsiloxane) microdomains with sizes of 10–20 nm were dispersed in a continuous ER‐rich phase; the average distance between the neighboring microdomains was in the range of 20–50 nm. The miscibility between the cured ER and the poly(ethylene oxide) block of PEO–PDMS was ascribed to the favorable hydrogen‐bonding interaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3042–3052, 2006  相似文献   

20.
Blends of chitosan and poly(vinyl pyrrolidone) (PVP) have a high potential for use in various biomedical applications and in advanced drug‐delivery systems. Recently, the physical and chemical properties of these blends have been extensively characterized. However, the molecular interaction between these two polymers is not fully understood. In this study, the intermolecular interaction between chitosan and PVP was experimentally investigated using 13C cross‐polarization magic angle‐spinning nuclear magnetic resonance (13C CP/MAS NMR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). According to these experimental results, the interaction between the polymers takes place through the carbonyl group of PVP and either the OH? C6, OH? C3, or NH? C2 of chitosan. In an attempt to identify the interacting groups of these polymers, molecular modeling simulation was performed. Molecular simulation was able to clarify that the hydrogen atom of OH? C6 of chitosan was the most favorable site to form hydrogen bonding with the oxygen atom of C?O of PVP, followed by that of OH? C3, whereas that of NH? C2 was the weakest proton donor group. The nitrogen atom of PVP was not involved in the intermolecular interaction between these polymers. Furthermore, the interactions between these polymers are higher when PVP concentrations are lower, and interactions decrease with increasing amounts of PVP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1258–1264, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号