首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A perfect single crystal of nylon‐2,14 was prepared from 0.02% (w/v) 1,4‐butanediol solution by a “self‐seeding” technique and isothermal crystallization at 120 and 145 °C. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide‐angle X‐ray diffraction (WAXD). The nylon‐2,14 single crystal grown from 1,4‐butanediol at 145 °C inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon‐2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, α = 60.4°, β = 77°, and γ = 59°. The crystal structure is different from that of nylon‐6,6 but similar to that of other members of nylon‐2Y. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1913–1918, 2002  相似文献   

2.
Ring opening polymerization of ε‐caprolactone was realized in the presence of monomethoxy poly(ethylene glycol) with Mn = 1000 and 2000, using Zn(La)2 as catalyst. The resulting PCL‐PEG diblock copolymers with CL/EO repeat unit molar ratios from 0.2 to 3.0 were characterized by using DSC, WAXD, SEC, and 1H NMR. The crystal phase of PCL blocks exist in all polymers, and the crystallization ability of PCL blocks increases with CL/EO ratio. PEG blocks are able to crystallize for copolymers with CL/EO below 1.0 only. Melt crystallization results were analyzed with Avrami equation. The Averami exponent n is around 3.0 in most cases, in agreement with heterogeneous nucleation with three dimensional growth. The morphology of the crystals was observed by using POM. Rod‐like crystals were found to grow in 1, 3 or 2, 4 quadrants for samples with low molecular weights. In the case of a copolymer with Mn,PEG = 2000 and Mn,PCL = 800, PEG blocks could crystallize and grow on PCL crystals after PCL finished to form rod‐like crystals, leading to formation of poorly or well structured spherulites. The spherulite growth rate (G) was determined at different crystallization temperatures (Tc) ranging from 9 to 49 °C. All the copolymers present a steady G decrease with increasing crystallization temperature due to lower undercooling. On the other hand, increase of CL/EO ratio leads to increase of G in the same Tc range. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 286–293, 2010  相似文献   

3.
Reflection–absorption infrared spectroscopy was used to study the crystallization behavior of poly(ethylene terephthalate) (PET) ultrathin films. The crystallinity of ultrathin films was estimated by the fraction of trans conformers of PET. The isothermal and nonisothermal crystallization kinetics of ultrathin films with different thicknesses were investigated. The thinner PET film showed slower kinetics during isothermal crystallization than the thicker film. Moreover, the final crystallinity of films with various thicknesses were reduced with decreasing thickness. An Avrami equation was used to fit the acquired results. The Avrami exponents decreased with the film thickness. As for the nonisothermal crystallization, the cold‐crystallization starting temperature shifted to a lower temperature as the film thickness increased. The influence of the substrate on the crystallization kinetics of the films was also studied. The half‐crystallization times and final crystallinities of ultrathin films adsorbed onto a self‐assembled‐monolayer‐treated surface and an untreated substrate were clearly different, although their thickness dependence was similar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4440–4447, 2004  相似文献   

4.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

5.
Crystal growth of the trigonal form of isotactic poly(butene‐1) (it‐PB1) was successfully observed in the melt at atmospheric pressure. The growth rate of trigonal crystals was obtained by in situ optical microscopy. It is one hundredth that of it‐PB1 tetragonal crystals. The growth rate of trigonal crystals, as well as that of tetragonal crystals, shows supercooling dependence derived from the nucleation theory. The value of the kinetic constant K of trigonal crystals is about 3.3 times larger than that of tetragonal crystals. The value of the pre‐exponential factor G0 of trigonal crystals was found to be 41 times as large as that of tetragonal crystals. The difference between these K values can be attributed to the conformational entropy of the ethyl side groups in a nucleating stem. The discrepancy found in the values of G0 could be explained by introducing pinning and nucleation barriers, which originate from the crystal thickness δlc, which does not depend on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 684–697, 2007  相似文献   

6.
To obtain β‐phase dominant ferroelectric poly(vinylidene fluoride) (PVDF) homopolymer thin films on aluminum‐coated silicon substrates, the retaining and loss of water were manipulated by introducing several hydrated and hygroscopic chemicals in the precursor solutions, including aluminum nitrate nonahydrate, aluminum chloride hexahydrate, chromium nitrate nonahydrate, tetra‐n‐butylammonium chloride, and one hygroscopic but nonhydrated chemical, ammonium acetate. Their ability of retaining water during the thermal annealing of the films and the relationship between water retaining and the effects on promoting the β phase were investigated. The results showed an ideal scenario was that the added hydrated salts should be able to retain substantial amount of water during the PVDF crystallization to effectively promote the β phase but completely dehydrate or decompose at the further elevated annealing temperature in order to obtain β‐phase dominant PVDF film without substantially incorporating water and deteriorating the electrical properties. As one of the hydrated chemicals well satisfying the above requirements, Al(NO3)3·9H2O, of different amounts was introduced to the PVDF precursor solutions and the optimal resulting β‐phase dominant ferroelectric PVDF thin films exhibited smooth morphology, low dielectric loss, high remnant polarization of 89 mC/m2, and large effective piezoelectric coefficient d33 of ?14.5 pm/V (under the clamping of the substrate). © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2410–2418, 2009  相似文献   

7.
This review focuses on the structural control in thin films of regioregular poly(3‐hexylthiophene) (P3HT), a workhorse among conjugated semiconducting polymers. It highlights the correlation existing between processing conditions and the resulting structures formed in thin films and in solution. Particular emphasis is put on the control of nucleation, crystallinity and orientation. P3HT can generate a large palette of morphologies in thin films including crystalline nanofibrils, spherulites, interconnected semicrystalline morphologies and nanostructured fibers, depending on the elaboration method and on the macromolecular parameters of the polymer. Effective means developed in the recent literature to control orientation of crystalline domains in thin films, especially by using epitaxial crystallization and controlled nucleation conditions are emphasized. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1218–1233, 2011  相似文献   

8.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   

9.
The isothermal crystallization of poly(l ‐lactide) (PLLA) in blends with poly(butylene oxalate) (PBOX) is investigated by time‐resolved small‐angle X‐ray scattering, differential scanning calorimetry, and optical microscopy. We focus on the temperatures at which only PLLA crystallizes while PBOX is amorphous. It is obtained that the addition of PBOX causes a reduction of the melting temperature of PLLA. The lamellar thickness of PLLA crystals decreases whereas the amorphous layer thickness increases with blend composition, suggesting the occurrence of the interlamellar incorporation upon the addition of PBOX. The crystal growth rate and morphology of PLLA/PBOX blends are analyzed by polarized optical microscopy. The spherulite growth rate of PLLA is found to increase with the addition of PBOX. Analysis of the isothermal crystallization in terms of the Lauritzen and Hoffman equation give the reduction of the fold surface free energy upon the addition of PBOX in PLLA, indicating that the mobility of the PLLA chains is significantly improved due to the presence of PBOX. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 192–202  相似文献   

10.
Many dynamical properties of polymers, including segmental relaxation and chain diffusion, exhibit anomalies in thin‐film samples. We extend the studies of thin‐film dynamics to the case of semicrystalline polymers and present a study of the crystal growth rate for thin films of poly(ethylene oxide). We used optical microscopy and quartz crystal microbalance techniques to characterize the kinetics of crystallization for films with thicknesses from 40 to 1000 nm for a range of temperatures near the melting point. A remarkable slowing down of the crystal growth is observed at all temperatures studied for films with a thickness of less than ~100 nm. The results can be used to suggest reductions of the mobility of chains at the crystal/amorphous interface. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2615–2621, 2001  相似文献   

11.
Thin films were fabricated layer‐by‐layer (LbL) via ionic bonds formed between a cationic ionomer and an anionic ionomer, which were produced via proton transfer from poly(styrene‐co‐styrenesulfonic acid) to poly(methyl methacrylate‐co‐4‐vinylpyridine) in an organic solvent, tetrahydrofuran. Ionic contents of the ionomers were very low down to 5.6 mol %, much lower than usual polyelectrolytes. The build up of the LbL films was demonstrated by UV/vis spectroscopy: the absorbance of the phenyl rings in styrene residues increased with the number of depositions (thus the number of layers). Transmission electron microscopy observation of strained thin films showed unique deformation mode, involving many bands that developed both in the parallel and perpendicular directions to the stress axis. This is quite different from the deformation modes seen for ionomer blend films and for coextruded polystyrene/poly(methyl methacrylate) multilayer tapes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 101–105, 2012  相似文献   

12.
The crystal structure of poly(ω‐pentadecalactone) (PPDL) synthesized by enzyme‐catalyzed polymerization was determined by full‐profile refinement. A pseudo‐orthorombic monoclinic unit cell with dimensions a = 7.49(1), b = 5.034(9), and c = 20.00(4)Å (fiber axis), and α = 90.06(4)° hosts two monomeric units belonging to polymer chains with opposite orientation, according to the P21 space‐group symmetry. A close similarity to the crystal structure of poly(?‐caprolactone) was evident. However, the even number of backbone atoms in the monomer unit of PPDL leads to a lower crystal symmetry. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1009–1013, 2003  相似文献   

13.
The crystallization of isotactic poly(4‐methylpentene‐1) in its stable tetragonal crystal modification based on the 72 helix conformation was achieved on three different low molecular weight organic substrates and on polytetrafluoroethylene. The contact face was always the (100) face, although the details of the epitaxial relationships generated one, two, or even three chain axis orientations in the polymer epitaxial overgrowth. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3088–3097, 2000  相似文献   

14.
Using fast scanning calorimetry, we determined the crystallinity of thin films of poly(3‐hexylthiophene) crystallized from the melt from measurements of the specific melting enthalpy. A broad range of film thicknesses from 10 µm down to 26 nm was covered. The sample mass was determined from measurements of the specific heat capacity in the molten state allowing a quantitative analysis of the heat flow data. Films with a thickness 400 nm slowly cooled from the melt showed the same crystallinity as bulk samples measured with conventional DSC. Below 350 nm the melting enthalpy decreased strongly. We assign this strongly reduced crystallinity to the restricted crystallization kinetics originating from hindered spherulitic growth under thin film confinement. A higher crystallinity could be partially regained by extended isothermal crystallization at elevated temperatures. Much faster cooling, with rates above about 100 Ks?1 led to a partial suppression of crystallization even for thick films. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1791–1801  相似文献   

15.
The β‐cyclodextrin (β‐CD) and γ‐cyclodextrin (γ‐CD) inclusion complexes (ICs) with four kinds of polyolefin were prepared. The crystallization behavior of isotactic poly(1‐butene) (iPB‐1) blended with these CDs and ICs was investigated by differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction. The iPB‐1 blended with the ICs was found to exhibit higher crystallization temperature (TC), smaller spherulites, and faster crystallization rate than neat iPB‐1. These results indicate that the ICs can act as nucleating agent on the crystallization of iPB‐1 and induce the accelerated crystallization. The guest molecules of ICs play an important role in the nucleation effect of ICs on the crystallization of iPB‐1. ICs with polyolefin having higher TC as guest molecules have higher nucleation effect than the one with polyolefin having lower TC as guest molecules. And, the CDs and ICs induce different crystal form of iPB‐1. The crystal of iPB‐1 blended with CDs is defective, whereas the crystal of iPB‐1 blended with ICs is more perfect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 389–395, 2010  相似文献   

16.
The low vapor pressure solvent 1‐chloropentane was used to directly spincast polystyrene (PS) films onto poly(methyl methacrylate) (PMMA) with smooth surfaces and sharp interfaces. Interface roughness after removal of the PS layer with cyclohexane was determined with scanning force microscopy to be <1 nm. Dynamic secondary mass spectroscopy revealed an interfacial width below the resolution limit of ~10 nm. Large area bilayers with smooth surfaces could be created. In addition, direct spincasting with 1‐chloropentane allows the production of thin PS films (<15 nm) and films of low molecular weight (<5 kDa) PS, all of which would be impossible to produce for this important model system by the traditional water‐transfer method. 1‐chloropentane was confirmed to be a sufficiently selective solvent for PS by measuring the Flory–Huggins χ parameters of 1‐chloropentane with PS and PMMA, respectively, with inverse gas chromatography. In the search for a suitable selective solvent, the authors have also examined the role of vapor pressure in spin casting smooth films over a wider molecular weight (4.3–190 kDa) and thickness range (~5–500 nm) than previously reported. Only solvents with low vapor pressure produced high quality PS films. Methylcyclohexene can also be used to produce excellent, directly cast PS/PMMA bilayers, but with a smaller molecular weight and thickness window compared with 1‐chloropentane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3234–3244, 2006  相似文献   

17.
Oriented poly(vinylidene fluoride) (PVDF) films consisting of β crystals were prepared by the solid‐state coextrusion (SC) of a gel film near the melting temperature (Tm) and by conventional cold tensile drawing (TD) of a melt‐quenched film. These films were annealed over the temperature range of 75–190 °C (below and above the static Tm) while the sample length was kept constant or constant loads were applied. After annealing with the sample length kept constant, the dynamic Young's modulus markedly decreased because of the relaxation of oriented amorphous chains, as shown by infrared spectroscopy. In contrast, annealing under a constant load improved the chain orientation in both the crystalline and amorphous regions, resulting in an increase in the modulus from an initial 10.5 to 14.3 GPa for the SC and from an initial 3.3 to 4.8 GPa for the TD. The SC, annealed at 190 °C with a constant load corresponding to an initial tension of 200 MPa, exhibited an extreme crystalline‐chain orientation of 0.998 and a modulus of 14.3 GPa, among the highest values ever reported for PVDF. Although the remanent polarization (Pr) of the TD increased slightly from the initial 62 to 68 mC/m2, Pr of the SC stayed constant at 100 mC/m2 independently of the annealing conditions. This suggests that the Pr value of 100 mC/m2 approached the equilibrium value for this PVDF sample containing 3.5 mol % structural defects. Therefore, although the modulus and Pr of the TD increased slightly with annealing, the maximum values achieved by annealing were markedly lower than those of the SC and annealed SC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1701–1712, 2003  相似文献   

18.
Three-dimensional shape of polyethylene single crystals grown from the melt has been studied. Two distinct types of lateral habit have been obtained: lenticular shape (type A) and truncated lozenge (type B) in the range of regime I and II. Electron microscopy has revealed chair-like shape of type B crystal and reconfirmed the planar shape of type A crystal. In the type B crystal, spiral growth has occurred frequently in the {110} sectors and the sense of the handedness of spiral terraces has been maintained. It has been, suggested that the frequens occurrence of spiral growth is responsible for a morphological change (axialite-spherulite) accompanying the regime I–II transition. The origin of the chair-like crystals has been discussed and, a possible mechanism has been suggested for the formation of spiral terraces; the mechanism is based on a distortion caused by the three-dimensional shape of chair-like crystals. It has been found that the chair-like crystals are curved in the opposite way to S-shaped lamellae observed by Bassett and Hodge in banded spherulites. In fact, the present work has led to the recognition of further classes of crystal with curving cross-sections and of distinctions between them. In final analysis, a unifying thread has been identified between lateral habits, growth kinetics and three-dimensional shape of lamellae, in turn, leading to some rationalization of multilayer developments including twisting in banded spherulites, the latter based on existing suggestions in the literature.  相似文献   

19.
Subtle crystalline structure changes of poly(butylene terephthalate) (PBT) specimens treated with an alkali solution at room temperature were investigated with the grazing incidence X-ray diffraction (GIXRD) analysis method. A new phenomenon was found: the aqueous alkali solution induced the crystallization of the PBT polymer. Under the GIXRD analysis condition of an incidence angle of 1°, the penetration depth of the X-ray in PBT was less than 80 μm, and this agreed well with the rough theoretical estimation. The alkali solution adopted in this study was an aqueous sodium hydroxide solution, which had a concentration of 2.5 N. Dissolved quantities of the surface layers during the alkaline treatment were found to be small. No appreciable intrinsic viscosity change due to the alkaline treatment was detected. Possible factors that might contribute to the crystallization, such as water absorption and a chemical reagent effect, were examined, and a plausible explanation for the phenomenon was developed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1938–1948, 2004  相似文献   

20.
Nanophase‐separated poly(2‐hydroxyethyl methacrylate)‐l‐polyisobutylene (PHEMA‐l‐PIB) amphiphilic conetworks were obtained by crosslinking α,ω‐bismethacrylate‐terminated polyisobutylene (PIB) via copolymerization with silylated 2‐hydroxyethyl methacylate, followed by the hydrolysis of the silylether groups. Morphology development of a sample containing 64% PIB was monitored by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small‐angle X‐ray scattering. For comparison, the morphology of a sample containing 53% PIB was investigated by AFM. The dry conetworks exhibited hydrophilic and hydrophobic phases with average 8–10‐nm domain sizes and were swellable in water as well as in heptane. Swelling amphiphilic conetworks with aqueous cadmium–chloride solution followed by exposure to H2S resulted in nanosized CdS clusters located in the amphiphilic conetworks, that is, for the first time, new inorganic–organic hybrid materials composed of CdS semiconducting nanocrystals and PHEMA‐l‐PIB amphiphilic conetworks were prepared. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1429–1436, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号