首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, poly­[[[di­aqua(μ‐4,4′‐bipyridyl)­di­nickel(II)]‐bis(μ‐4,4′‐bipyridyl)‐di‐μ‐hexa­oxo­di­vana­date(2?)] 2.5‐hydrate], [Ni2­(V2O6)2­(C10H8N2)3­(H2O)2]·­2.5H2O, has been prepared hydro­thermally and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction. The structure consists of [V2O6], [Ni­(4,4′‐bipy)4O2] and [Ni­(H2O)2­(4,4′‐bipy)2O2] polyhedra, and water of crystallization. The Ni atoms and one bipyridyl group lie on centres of symmetry.  相似文献   

2.
A novel copper(II) coordination polymer, poly­[[[aqua­copper(II)]‐μ3‐2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O:O′] dihydrate], {[Cu(C12H6N2O4)(H2O)]·2H2O}n, was obtained by the reaction of CuCl2·2H2O and 2,2′‐bipyridyl‐3,3′‐di­carboxylic acid (H2L) in water. In the mol­ecule, each CuII atom is five‐coordinated and lies at the centre of a square‐pyramidal basal plane, bridged by three L ligands to form a two‐dimensional (4,4)‐network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three CuII atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two‐dimensional square‐grid sheets superimpose in an off‐set fashion through the inorganic water layer.  相似文献   

3.
The title complex, [CuCl2(C6H6N4S2)], has a flattened tetrahedral coordination. The CuII atom is located on a twofold rotation axis and is coordinated by two N atoms from a chelating 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and by two Cl atoms. Intramolecular hydrogen bonding exists between the amino groups of the 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and the Cl atoms. The intermolecular separation of 3.425 (1) Å between parallel bi­thia­zole rings suggests there is a π–π interaction between them.  相似文献   

4.
The title organometallic compound, fac‐tri­carbonyl‐2κ3C‐(4,4′‐di­methyl‐2,2′‐bi­pyridine)‐2κ2N,N′‐tri­phenyl‐1κ3C1‐tin(II)­rhenium(I)(Sn—Re), [ReSn(C6H5)3(C12H12N2)(CO)3], con­tains three unique π–π stacking interactions. The result is an infinite chain of uninterrupted alternating intra‐ and intermolecular offset π–π stacking interactions throughout the crystal lattice. This extended π–π stacking arrangement, and an additional isolated intramolecular π–π interaction between the remaining 4,4′‐di­methyl‐2,2′‐bi­pyridine ring and a second phenyl group, impose geometric constraints on the Re and Sn atoms, yielding distorted octahedral and tetrahedral coordinations, respectively, for the metal centers.  相似文献   

5.
We have determined the crystal structures of 2,2′‐(4‐fluoro­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C23H27FO4, (I), 2,2′‐(4‐chloro­phenyl)­methyl­enebis(3‐hy­droxy‐5,5‐dimethyl‐2‐cyclo­hexen‐1‐one), C23H27ClO4, (II), 2,2′‐(4‐hydroxy­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C23H28O5, (III), 2,2′‐(4‐methyl­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C24H30O4, (IV), 2,2′‐(4‐methoxy­phenyl)­methyl­enebis(3‐hy­droxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C24H30O5, (V), and 2,2′‐(4‐N,N′‐di­methyl­amino­phenyl)­methyl­enebis(3‐hydroxy‐5,5‐di­methyl‐2‐cyclo­hexen‐1‐one), C25H33NO4, (VI). Structures (III) to (VI) of these bis‐dimedone derivatives show nearly the same packing pattern irrespective of the different substituent in the para position of the aromatic ring. However, (II) does not fit into this scheme, although the Cl atom is a substituent not too different from the others. The different packing of the fluoro compound, (I), can be explained by the fact that it crystallizes with two mol­ecules in the asymmetric unit, which show a different conformation of the dimedone ring. On the other hand, (I) shows a similar packing pattern to bis(2‐hydroxy‐4,4‐di­methyl‐6‐oxo‐1‐cyclo­hexenyl)­phenyl­methane, a compound containing an aromatic ring without any substituent and with Z′ = 2.  相似文献   

6.
The sterically encumbered ter­phenyl halides 2′‐chloro‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Cl, (I), 2′‐bromo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49Br, (II), and 2′‐iodo‐2,2′′,4,4′′,6,6′′‐hexaisopropyl‐1,1′:3′,1′′‐terphenyl, C36H49I, (III), crystallize in space group Pnma. They are isomorphous and isostructural with a plane of symmetry through the centre of the mol­ecule. The C–halide bond distances are 1.745 (3), 1.910 (4) and 2.102 (6) Å for (I)–(III), respectively.  相似文献   

7.
The asymmetric unit of the title compound, [Zn(C7H5O3)2(C10H8N2)], contains one monomeric zinc complex. The Zn atom is coordinated to one 2,2′‐bipyridyl ligand via both N atoms and to two salicyl­ate anions (Hsal) in a bidentate chelating manner involving carboxyl­ate O‐atom coordination. The complex exhibits a distorted octahedral geometry about the ZnII atom, with the `apical' positions occupied by one of the two N atoms of the bipyridyl ligand and an O atom from one Hsal ligand; the Zn atom is 0.168 (1) Å out of the `basal' plane. Two intramolecular six‐membered hydrogen‐bonded rings are present, generated from interactions between the carboxyl and hydroxyl groups of the salicyl­ate ligands. The crystal packing is governed by weak C—H⋯O and C—H⋯π interactions.  相似文献   

8.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

9.
The title compound, aqua­chloro{4,4′‐di­bromo‐2,2′‐[o‐phenylenebis­(nitrilo­methyl­idyne)]­diphenolato‐O,N,N′,O′}iron(III)–chloro{4,4′‐di­bromo‐2,2′‐[o‐phenyl­enebis­(nitrilomethyli‐dyne)]diphenolato‐O,N,N′,O′}iron(III)–di­methyl­form­amide (1/1/1), [FeCl(C20H12Br2N2O2)][FeCl(C20H12Br2N2O2)(H2O)]·C3H7NO, contains one independent five‐coordinate [FeCl(C20H12Br2N2O2)] monomer, one six‐coordinate [FeCl(C20H12Br2N2O2)(H2O)] monomer and a non‐coordinating di­methyl­form­amide solvent mol­ecule in the asymmetric unit. In the five‐coordinate monomer, the Fe atom shows distorted square‐pyramidal geometry, with the N and O atoms of the ligand at the base and the Cl atom at the apex of the pyramid. In the six‐coordinate monomer, the Fe atom is in a distorted octahedral geometry and coordinated by the donor atoms of the tetrafunctional ligand in the horizontal plane, and the coordination sphere is completed by the O atom of the water mol­ecule and the Cl atom at the axial positions. The title compound contains intermolecular O—H?O hydrogen bonds. Apart from these hydrogen bonds, there are also intermolecular C—H?Cl and C—H?O contacts.  相似文献   

10.
The crystal structure of the title compound, (2,2′‐bipyridyl‐κ2N,N′)(tetra­allyl 3,3,3′,3′‐tetra­methyl‐1,1′‐bi­cyclo­propane‐1,1′,2,2′‐tetra­carboxyl­ato‐κ2C2,C2′)­palladium(II), [Pd(C26H32­O8)(C10­H8­N2)], is disordered above 194 K. A doubling of the unit cell is observed on cooling. The structure at 143 K contains two ordered mol­ecules related by a pseudo‐translation vector of approximately (0.44,0.00,0.50) or a pseudo‐inversion center at approximately (0.22,0.00,0.25). Weak intermolecular C—H?O interactions are enhanced in the low‐temperature structure.  相似文献   

11.
The title compound, [Tb2(C24H12F9O6S3)2(C8H6N4)]·C4H8O2, has two terbium(III) centers bridged by the polyazine ligand 2,2′‐bipyrimidine (bpm), which is distorted from planarity by 7.0 (2)°. The terminal ligand 4,4,4‐trifluoro‐1‐(2‐thienyl)­butane‐1,3‐dione (tta) is bidentate, coordinating through the two O atoms, while the bridging ligand is bis‐bidentate, coordinating through four equivalent N atoms. Both the complex and the ethyl acetate solvent mol­ecules are dis­ordered. The structure was refined as a non‐merohedral twin.  相似文献   

12.
The crystal structure of the proton‐transfer compound of 1,1′‐biphenyl‐4,4′‐diamine (benzidine) with 3,5‐dinitro­salicylic acid, viz. 1,1′‐biphenyl‐4,4′‐diaminium bis­(4′‐amino‐1,1′‐bi­phenyl‐4‐aminium) tetra­kis(2‐carb­oxy‐4,6‐dinitro­phenol­ate) ethanol disolvate, C12H14N22+·2C12H13N2+·4C7H3N2O7·2C2H6O, shows the presence of both diprotonated and monoprotonated benzidine cations. The diprotonated species lie across crystallographic inversion centres in the unit cell, while the monoprotonated species occupy general sites. All amine H atoms participate in hydrogen bonding with carboxyl, phenolate and nitro O‐atom acceptors of the salicylate anions, which also participate in hydrogen bonding with the disordered ethanol solvent mol­ecules. Significant inter‐ring anion–anion and anion–monocation π–π inter­actions are also present, giving a three‐dimensional framework structure.  相似文献   

13.
The zinc(II) coordination polymers [Zn(Htatb)(2,2′‐bipy) · (NMP) · H2O] ( 1 ) and [Zn3(tatb)2(2,2′‐bipy)3 · H2O] ( 2 ) (H3tatb = 4,4′,4′′‐s‐triazine‐2,4,6‐triyl‐tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl, NMP = N‐methyl‐2‐pyrrolidon), were synthesized hydrothermally, and characterized by infrared spectroscopy (IR), powder X‐ray diffraction (PXRD), and single‐crystal X‐ray diffraction. Both compounds 1 and 2 possess expectant low dimensional coordination structures, which further connected into interesting 3D networks by hydrogen bond and strong π–π interactions. Moreover, the thermal stabilities and fluorescent properties of 1 and 2 were investigated.  相似文献   

14.
Structure analyses of 4,4′‐bis(4‐hydroxy­butyl)‐2,2′‐bi­pyridine, C18H24N2O2, (I), and 4,4′‐bis(4‐bromo­butyl)‐2,2′‐bi­pyridine, C18H22Br2N2, (II), reveal intermolecular hydrogen bonding in both compounds. For (I), O—H·N intermolecular hydrogen bonding leads to the formation of an infinite two‐dimensional polymer, and π stacking interactions are also observed. For (II), C—H·N intermolecular hydrogen bonding leads to the formation of a zigzag polymer. The two compounds crystallize in different crystal systems, but both mol­ecules possess Ci symmetry, with one half mol­ecule in the asymmetric unit.  相似文献   

15.
In polymeric {[Eu(pzdc)(NO3)(phen)(H2O)]·H2O}n [pzdc is 2,3‐pyrazine­di­carboxyl­ate (C6H2O4) and phen is 1,10‐phenanthroline (C12H8N2)], each europium(III) ion is coordinated by seven O atoms (from three pzdc anions, a nitrate anion and a water mol­ecule) and the two N atoms of the phen ligand, resulting in a nine‐coordinated europium(III) center with a distorted monocapped square‐antiprismatic coordination polyhedron. Four pzdc anions bridge four europium(III) ions, forming a parallelogram unit, the four vertices of which are occupied by the four pzdc anions. Moreover, each parallelogram unit links six other adjacent parallelogram units, forming a two‐dimensional network with disordered lattice water mol­ecules.  相似文献   

16.
The mol­ecular structures of the complexes imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate, C3H5N2+·C22H28O4PS, (I), and imidazolium 6,6′‐di‐tert‐butyl‐4,4′‐dimethyl‐2,2′‐thio­diphenyl phosphate diisopropyl hydrazo­dicarboxyl­ate hemisolvate, C3H5N2+·C22H28O4PS·0.5C8H16N2O4, (II), have been determined. While (I) forms the expected hydrogen‐bonded chain utilizing the two imidazole N‐bound H atoms, in (II), the substituted hydrazine solvent mol­ecule inserts itself between the chains. Compound (I) exhibits a strong N—H⋯O hydrogen bond, with an N⋯O distance of 2.603 (2) Å. The hydrazine solvent molecule in (II) lies about a twofold axis and the N‐bound H atoms are involved in bifurcated hydrogen bonds with phosphate O atoms. A C‐bound H atom of the imidazolium cation is involved in a C—H⋯O inter­action with a carbonyl O atom of the hydrazine solvent mol­ecule.  相似文献   

17.
The title compound, {[Cu(C10H8N2)(H2O)](C8H4O4)0.5·H2O}n, has been synthesized hydro­thermally and characterized by single‐crystal X‐ray diffraction. The compound consists of nearly linear one‐dimensional chains of [Cu(4,4′‐bipy)(H2O)]nn+ cations (4,4′‐bipy is 4,4′‐bipyridyl), surrounded by isophthalate anions and free water mol­ecules. Hydro­gen‐bonding interactions involving cationic chains, isophthalate anions and free water mol­ecules lead to the formation of a three‐dimensional network structure.  相似文献   

18.
In the title compound, [Co(C5H3N2O4)2(H2O)2]·C10H8N2, the Co atom is trans‐coordinated by two pairs of N and O atoms from two monoanionic 4,5‐di­carboxy­imidazole ligands, and by two O atoms from two coordinated water mol­ecules, in a distorted octahedral geometry. The 4,4′‐bi­pyridine solvent molecule is not involved in coordination but is linked by an N—H⋯N hydrogen bond to the neutral [Co(C5H3N2O4)2(H2O)2] mol­ecule. Both mol­ecules are located on inversion centers. The crystal packing is stabilized by N—H⋯N and O—H⋯O hydrogen bonds, which produce a three‐dimensional hydrogen‐bonded network. Offset π–π stacking interactions between the pyridine rings of adjacent 4,4′‐bi­pyridine molecules were observed, with a face‐to‐face distance of 3.345 (1) Å.  相似文献   

19.
The title compound, [VO(SO4)(C6H6N4S2)(H2O)2]·4H2O, displays a distorted octahedral coordination geometry. The 2,2′‐di­amino‐4,4′‐bi­thia­zole ligand is present in the usual chelating bidentate mode. The sulfate ligand coordinates in a monodentate fashion to the V atom. A large displacement of the V atom from the equatorial plane towards the oxo group correlates with the strong V=O double bond. In the crystal structure, a three‐dimensional supramolecular network is formed by hydrogen bonds.  相似文献   

20.
We report the synthesis of the 2,2′‐[2,5‐bis(carboxymethoxy)‐1,4‐phenylene]diacetic acid (TALH4) ligand and the structures of its adducts with ammonium, namely diammonium 2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetate, 2NH4+·C14H12O102−, (I), lanthanum, namely poly[[aquabis[μ4‐2,2′‐(2‐carboxylatomethyl‐5‐carboxymethyl‐1,4‐phenylenedioxy)diacetato]dilanthanum(III)] monohydrate], {[La2(C14H11O10)2(H2O)]·H2O}n, (II), and zinc cations, namely poly[[{μ4‐2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetato}zinc(II)] trihydrate], {[Zn(C14H12O10)]·3H2O}n, (III), and poly[[diaqua(μ2‐4,4′‐bipyridyl){μ4‐2,2′‐[2,5‐bis(carboxymethyl)‐1,4‐phenylenedioxy]diacetato}dizinc(II)] dihydrate], {[Zn2(C14H10O10)(C10H8N2)(H2O)2]·2H2O}n, (IV), the formation of all four being associated with deprotonation of TALH4. Adduct (I) is a diammonium salt of TALH22−, with the ions located on centres of crystallographic inversion. Its crystal structure reveals a three‐dimensional hydrogen‐bonded assembly of the component species. Reaction of TALH4 with lanthanum trinitrate hexahydrate yielded a two‐dimensional double‐layer coordination polymer, (II), in which the LaIII cations are nine‐coordinate. With zinc dinitrate hexahydrate, TALH4 forms 1:1 two‐dimensional coordination polymers, in which every ZnII cation is linked to four neighbouring TALH22− anions and each unit of the organic ligand is coordinated to four different tetrahedral ZnII cation connectors. The crystal structure of this compound accommodates molecules of disordered water at the interface between adjacent polymeric layers to give (III), and it has been determined with low precision. Another polymer assembly, (IV), was obtained when zinc dinitrate hexahydrate was reacted with TALH4 in the presence of an additional 4,4′‐bipyridyl ligand. In the crystal structure of (IV), the bipyridyl and TAL4− entities are located on two different inversion centres. The ternary coordination polymers form layered arrays with corrugated surfaces, with the ZnII cation connectors revealing a tetrahedral coordination environment. The two‐dimensional polymers in (II)–(IV) are interconnected with each other by hydrogen bonds involving the metal‐coordinated and noncoordinated molecules of water. TALH4 is doubly deprotonated, TALH22−, in (I) and (III), triply deprotonated, viz. TALH3−, in (II), and quadruply deprotonated, viz. TAL4−, in (IV). This report provides the first structural characterization of TALH4 (in deprotonated form) and its various supramolecular adducts. It also confirms the potential utility of this tetraacid ligand in the formulation of coordination polymers with metal cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号