首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intramolecular hydrogen‐bonding pattern of Z‐Leu‐Aib‐Pro‐Val‐OBg monohydrate [(N‐benzhydryl­amino)­carbonyl­methyl N‐benzyl­oxy­carbonyl‐α‐amino­isobutyryl­prolyl­valinate monohydrate], C43H55N5O8·H2O, is unusual for a tetrapeptide because, in addition to a 14 hydrogen bond, a second hydrogen bond of the type 15 is formed. This folding reflects the intramolecular hydrogen‐bonding pattern that this amino acid sequence adopts in the naturally occurring peptaibol alamethicin.  相似文献   

2.
In the title compound, C16H17NO4, the benzyl­oxy­carbonyl group is anti to the pyrrolic N atom. The mol­ecules are joined into head‐to‐head dimers by hydrogen bonds involving the carboxyl­ic acid groups. There is orientational disorder of these groups over two positions with approximately equal occupancy. A weaker hydrogen bond between the pyrrolic N atom and the carbonyl O atom of the benzyl­oxy­carbonyl group joins the dimers into chains running parallel to the [110] direction.  相似文献   

3.
The title compound (systematic name: 3‐benzyl­idene‐6‐iso­butyl­piperazine‐2,5‐dione), C15H18N2O2, an α,β‐dehydro­phenyl­alanine containing diketopiperazine, crystallizes in the space group P1 with two mol­ecules in the asymmetric unit arranged antiparallel to one another. The α,β‐dehydro­phenyl­alanine (ΔPhe) residue in this cyclic peptide retains its planarity but deviates from the standard conformations observed in its linear analogues. Each type of mol­ecule forms a linear chain with mol­ecules of the same type via pairwise N—H⋯O hydrogen bonds, while weaker C—H⋯O inter­actions link the chains together to form a three‐dimensional network.  相似文献   

4.
The title compounds, O‐benzyl‐N‐(benzyl­oxy­carbonyl)­threonyl‐2,N‐dimethyl­alanin­anilide, C30H35N3O5, and methyl (4R)‐4‐benzyl­oxy‐N‐(benzyl­oxy­carbonyl)­valyl‐2‐(methyl­alanyl)prolinate, C30H39N3O7, were obtained from the `azirine coupling' of the corresponding protected amino acids with 2,2,N‐trimethyl‐2H‐azirin‐3‐amine and methyl (4R)‐4‐(benzyl­oxy)‐N‐(2,2‐dimethyl‐2H‐azirin‐2‐yl)prolinate, respectively. The Aib unit in each mol­ecule has the greatest turn‐ or helix‐inducing effect on the mol­ecular conformation. Inter­molecular N—H⋯O inter­actions link the mol­ecules of the tripeptide into sheets and those of the dipeptide into extended chains.  相似文献   

5.
The crystal structure of the title compound, alternatively called 3‐[4‐(benzyl­oxy)­phenyl]‐2‐(Ntert‐butoxy­car­bonyl‐N‐methyl­amino)­propi­onic acid, C22H27NO5, has been studied in order to ex­amine the role of N‐methyl­ation as a determinant of peptide conformation. The conformation of the tert‐butoxy­carbonyl group is transtrans. The side chain has a folded conformation and the two phenyl rings are effectively perpendicular to one another. The carboxyl­ate hydroxyl group and the urethane carbonyl group form a strong intermolecular O—H?O hydrogen bond.  相似文献   

6.
In the title compound, C31H40N2O·H2O, the outer two six‐membered rings are in chair conformations, while the central ring is in an 8β,9α‐half‐chair conformation. The five‐membered ring adopts a 13β‐envelope conformation and the cyano­benzyl­idene moiety has an E configuration with respect to the hydroxyl group at position 17. The steroid nuclei are linked by intermolecular O—H?O and O—H?N hydrogen bonds to form a molecular network. The molecular packing has an interesting feature, with the steroids aligned parallel to the b axis, forming a closed loop through hydrogen bonds linked via water mol­ecules.  相似文献   

7.
In the title compound, 4‐(3β‐hydroxy‐17‐oxoandrost‐5‐en‐16‐ylidenemethyl)benzonitrile, C27H31NO2, rings A and C of the steroid nucleus are in chair conformations. The central six‐membered ring B is in an 8β,9α‐half‐chair conformation, while the five‐membered ring D adopts a 13β,14α‐half‐chair conformation. The cyano­benzyl­idene moiety has an E configuration with respect to the carbonyl group at position C17. The dihedral angle between the planes of the steroid nucleus and the cyano­benzyl­idene moiety is 22.61 (15)°. Intermolecular O—H⃛N hydrogen bonds formed between the hydroxyl group of the steroid and the N atom of the cyano­benzyl­idene moiety of symmetry‐related mol­ecules link the steroid mol­ecules into chains which run parallel to the b axis.  相似文献   

8.
The crystal structure of the neuroactive artificial dipeptide N‐­benzyl­oxy­carbonylprolyl‐d ‐leucine, C19H26N2O5, was solved using synchrotron radiation data collected on a very small crystal (20 × 20 × 380 μm). The mol­ecules form hydrogen‐bonded 21 helices. The acid carbonyl group does not participate in strong hydrogen bonds. This is interpreted as a consequence of close‐packing requirements.  相似文献   

9.
The title dipeptide, 1‐(tert‐butoxy­carbonyl‐d ‐alanyl)‐N‐iso­propyl‐l ‐pipecol­amide or Boc‐d ‐Ala‐l ‐Pip‐NHiPr (H‐Pip‐OH is pipecolic acid or piperidine‐2‐carboxylic acid), C17H31N3­O4, with a d –l heterochiral sequence, adopts a type II′β‐­turn conformation, with all‐trans amide functions, where the C‐terminal amide NH group interacts with the Boc carbonyl O atom to form a classical i+3 i intramolecular hydrogen bond. The Cα substituent takes an axial position [Hα (Pip) equatorial] and the trans pipecolamide function is nearly planar.  相似文献   

10.
The crystal structure of N‐(l ‐2‐amino­butyryl)‐l ‐alanine, C7H14N2O3, is closely related to the structure of l ‐alanyl‐l ‐alanine, both being tetragonal, while the retro‐analogue 2‐(l ‐alanyl­amino)‐l ‐butyric acid 0.33‐hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.  相似文献   

11.
Methyl β‐l ‐lactoside, C13H24O11, (II), is described by glycosidic torsion angles ϕ (O5Gal—C1Gal—O4Glc—C4Glc) and ψ (C1Gal—O1Gal—C4Glc—C5Glc) of 93.89 (13) and −127.43 (13)°, respectively, where the ring atom numbering conforms to the convention in which C1 is the anomeric C atom and C6 is the exocyclic hydroxy­methyl (CH2OH) C atom in both residues (Gal is galactose and Glc is glucose). Substitution of l ‐Gal for d ‐Gal in the biologically relevant disaccharide, methyl β‐lactoside [Stenutz, Shang & Serianni (1999). Acta Cryst. C 55 , 1719–1721], (I), significantly alters the glycosidic linkage inter­face. In the crystal structure of (I), one inter‐residue (intra­molecular) hydrogen bond is observed between atoms H3OGlc and O5Gal. In contrast, in the crystal structure of (II), inter‐residue hydrogen bonds are observed between atoms H6OGlc and O5Gal, H6OGlc and O6Gal, and H3OGlc and O2Gal, with H6OGlc serving as a donor with two intra­molecular acceptors.  相似文献   

12.
The α,β‐dehydro­phenyl­alanine residues influence the conformation of the title penta­peptide Boc0–Gly1–ΔZPhe2–Gly3–ΔEPhe4–l ‐Phe5p‐NA ethanol solvate, C42H43N7O9·C2H5OH. The first unsaturated phenyl­alanyl (ΔZPhe2) and the third glycyl (Gly3) residues form a type I β turn, while the second unsaturated phenyl­alanyl (ΔEPhe4) and the last phenyl­alanyl (l ‐Phe5) residues are part of a type II β turn. All the amino acids in the peptide are linked trans to one another. The crystal structure is stabilized by intra‐ and inter­molecular hydrogen bonds.  相似文献   

13.
Cations and anions of the title compound {systematic name: 1‐[4‐(amino­carbonyl)butyl]guanidinium bis­(hydrogen­squarate)}, C6H17N5O2+·2C4HO4, are connected into a three‐dimensional network by inter­molecular N—H⋯O hydrogen bonds between the l ‐argininamidium ammonium, amide and guanidinium functions and the hydrogensquarate carbonyl O atoms. The independent hydrogensquarate monoanions are linked into dimers by pairs of O—H⋯O′ hydrogen bonds.  相似文献   

14.
The structures of the title dipeptides, C9H18N2O4·0.33H2O, C12H16N2O4 and C8H16N2O4S·0.34H2O, complete a series of investigations focused on l ‐Xaa‐l ‐serine peptides, where Xaa is a hydro­phobic residue. All three structures are divided into hydro­philic and hydro­phobic layers. The hydro­philic layers are thin for l ‐phenyl­alanyl‐l ‐serine, rendered possible by an unusual peptide conformation, and thick for l ‐isoleucyl‐l ‐serine and l ‐methionyl‐l ‐serine, which include cocrystallized water mol­ecules on the twofold axes.  相似文献   

15.
One of the amino H atoms of l ‐phenyl­alanyl‐l ‐valine, C14H20N2O3, participates in a rare secondary interaction in being accepted by the aromatic ring of the phenyl­alanine side chain. The phenyl group is also a donor in a weak hydrogen bond to the peptide carbonyl group.  相似文献   

16.
The adduct 1,6‐di­amino­hexane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2) is a salt {hexane‐1,6‐diyldiammonium–4‐[1,1‐bis(4‐hydroxyphenyl)ethyl]phenolate (1/2)}, C6H18N22+·2C20H17O3?, in which the cation lies across a centre of inversion in space group P. The anions are linked by two short O—H?O hydrogen bonds [H?O 1.74 and 1.76 Å, O?O 2.5702 (12) and 2.5855 (12) Å, and O—H?O 168 and 169°] into a chain containing two types of R(24) ring. Each cation is linked to four different anion chains by three N—H?O hydrogen bonds [H?O 1.76–2.06 Å, N?O 2.6749 (14)–2.9159 (14) Å and N—H?O 156–172°]. In the adduct 2,2′‐bipyridyl–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C10H8N2·2C20H18O3, the neutral di­amine lies across a centre of inversion in space group P21/n. The tris­(phenol) mol­ecules are linked by two O—H?O hydrogen bonds [H?O both 1.90 Å, O?O 2.7303 (14) and 2.7415 (15) Å, and O—H?O 173 and 176°] into sheets built from R(38) rings. Pairs of tris­(phenol) sheets are linked via the di­amine by means of a single O—H?N hydrogen bond [H?N 1.97 Å, O?N 2.7833 (16) Å and O—H?N 163°].  相似文献   

17.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

18.
The crystal structure of a protected l ‐tyrosine, namely N‐acetyl‐l ‐tyrosine methyl ester monohydrate, C12H15NO4·H2O, was determined at both 293 (2) and 123 (2) K. The structure exhibits a network of O—H...O and N—H...O hydrogen bonds, in which the water molecule plays a crucial role as an acceptor of one and a donor of two hydrogen bonds. Molecules of water and of the protected l ‐tyrosine form hydrogen‐bonded layers perpendicular to [001]. C—H...π interactions are observed in the hydrophobic regions of the structure. The structure is similar to that of N‐acetyl‐l ‐tyrosine ethyl ester monohydrate [Soriano‐García (1993). Acta Cryst. C 49 , 96–97].  相似文献   

19.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

20.
The small synthetic peptide, benzyl 2‐(tert‐but­oxy­carbonyl‐amino)­isobutyrate, C16H23NO4, has the α‐helical conformation [|?| = 55.8 (2)° and |ψ| = 37.9 (2)°] observed in peptide fragments of peptaibols containing the α‐amino­isobutyric acid (Aib) residue. The structure shows no intramolecular hydrogen bonding, which would disrupt the limited conformational freedom associated with this amino acid. Two weak intermolecular hydrogen contacts are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号