首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The coordinating properties of the trifluoromethyl elemental compounds Me2PP(CF3)2 and Me2AsP(CF3)2 have been studied by the synthesis and spectroscopic investigations (IR, NMR, MS) of their complexes cis-M(CO)4L2 (A), [(CO)4ML]2 (B) and [(CO)5M]2L (C) (M = Cr, Mo, W). Complexes of type A with L = Me2PP(CF3)2 are obtained in good yield by reaction with M(CO)4NBD (NBD = norbornadiene), whereas with L = Me2AsP(CF3)2 the homobinuclear compounds B are formed. The attempt to prepare the cis-M(CO)4[Me2AsP(CF3)2]2 complexes by treating M(CO)4(Me2AsH)2 with P2(CF3)4 is successful only for M = W. Binuclear compounds of type B or C, in general, can be prepared by stepwise reaction of the ligands with either M(CO)4NBD or M(CO)5THF.  相似文献   

2.
The reaction of Pt(PPh3)n (n = 3 or 4) with [(CF3)3Ge]2Hg or (CF3)3GeHgPt(PPh3)2Ge(CF3)3 (I) gives a stable diplatinum complex [(CF3)3GePt(PPh3)2]2Hg (II). X-Ray analysis has established that compound II contains a Ge---Pt---Hg---Pt---Ge chain of C2 symmetry. Both of the Pt atoms have distorted square-planar coordinations. The bond lengths are: Pt---Hg, 2.630(2) and 2.665(2) Å; Ge---Pt, 2.410(4) and 2.407(4) Å.

Compound II reacts with dihydrogen in THF solution under mild conditions to give mercury and the hydride (CF3)3GePt(PPh3)2H. On interaction of II with R2Hg organomercurials (R = Cl, Et, GeEt3, Ge(CF3)3, Ge(C6F5)3) an unknown reaction takes place: Pt(PPh3)2 moieties migrate from the polymetallic grouping into the substrate with the formation of the corresponding RHgPt(PPh3)2R complexes or their demercuration products, R2Pt(PPh3);, (R = Cl, Et). The latter react further with complex I formed in the first step of the process to give Hg and (CF3)3GePt(PPh3)2R. The reaction schemes are discussed.  相似文献   


3.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC≈ 150° ((CF3SO2)2CF2 are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O2 possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

4.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC ≈ 150° ((CF3SO2)2CF2) are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

5.
The reaction between metallic barium and fluoroisopropanol or alcoholysis of [Ba(OPri)2] produces a pentanuclear fluoroalkoxide. Its X-ray structure determination showed its formulation to correspond to Ba55-OH)[μ3-OCH(CF3)2]42-OCH(CF3)2]4 [OCH(CF3)2](THF)4(H2O)·THF. The metallic core is based on a square pyramid encapsulating an hydroxo ligand. In addition to the barium---alkoxide bonds [2.53(3)–2.86(3) Å] neutral O-donors, four THF [2.82(2)–2.86(3) Å] and one H2O [2.79(3) Å] and secondary barium---fluorine interactions [2.99(2)–3.31(2) Å] ensure high coordination numbers, from 9 to 11 for the metal centers. Hydrogen bonding between the apical fluoroisopropoxide, the water molecule and one THF molecule, non-bonded to a metal center, accounts for the stability of the hydrate and illustrates the Lewis acidity of fluoroalkoxides. Thermal decomposition leads to BaF2.  相似文献   

6.
(C6H5)3MX2 (M = As, Sb; X = OCOCF3 and M = Sb, Bi; X = SO3F, SO3CF3) compounds prepared by the interaction of triphenylmetal(V) substrates with (CF3CO)2O, (CF3SO2)2O and (FSO2)2O have been characterized by molecular weight determination, elemental and spectroscopic (IR, 1H and 19F NMR, mass) analyses.  相似文献   

7.
The attempted preparation of bis(trifluoromethylsulphanyl)thioketene is described. Mono-and di-(trifluoromethylsulphanyl)-substituted orthothioesters may be prepared fromCH3C(SC2H5)3 and CF3SCl in the presence of anhydrous ZnCl2. The unstable compoundshave been isolated and characterized. The corresponding CF3Se and CF3SO2 derivativesare only formed as intermediates which decompose to ketene diethylmercaptal. Suchmono- and di-substituted products are obtained in good yield from H2C=C(SC2H5)2 andCF3ECl (E=S, Se). The reaction of H2C=C(SC2H5)2 with CF3SO2F gave only poor yieldsof (CF3SO2)nCH2−n=C(SC2H5)2 (n=1, 2) which were only capable of characterizationin etheral solution by spectral means. Attempts to prepare (CF3S)2C=C=S by refluxing(CF3S)2CHC(O)Cl, (CF3S)2CHC(O)OH or (CF3S)2C=C=O with P4S10 in toluene yieldedonly the cyclic dimer and the corresponding 1,3,4-trithiolan.  相似文献   

8.
The geometric structure of (CF3S)2C=C(SCF3)2 in the vapour phase was determined by electron diffraction. The molecule possesses D2 symmetry with the S---CF3 bonds oriented perpendicular to the ethene plane, in alternating directions up-down-up-down. The following skeletal geometric parameters were obtained (ra distances and angles, experimental uncertainties are 3σ values): C=C = 1.34Å (ass.), C(sp2---S = 1.761(5)Å, S---C(sp3) = 1.832(5)Å, S---C---C = 119.6(4)°, C---S---C = 100.6(13)°, and ø(C=C---S---C) = 90.9(11)°. The gas phase conformation differs considerably from the crystal structure, where the molecule possesses Ci symmetry and the CF3 groups, which are bonded to cis-standing sulfur atoms, lie on the same side of the ethene plane with dihedral angles ø(C=C---S---C) of 117° and 127°.  相似文献   

9.
The synthesis of the homoleptic molybdenum imido compound Li2Mo(NBut)4 is reported. The complexes M (NBut)2(NHBut)2 (M = Mo, W) can be protonated with various strong acids giving neutral species. The X-ray crystal structure of the tungsten complex W (NBut)2(NH2But)2 (SO3CF3)2 confirms the presence of O-coordinated cis- CF3SO3 groups.  相似文献   

10.
The tail-to-tail dimerization of methyl acrylate (MA) in the presence of H2Ru(PPh3)4 (1) or H2(CO)Ru(PPh3) 3 (2) and CF3SO3H to give a mixture of linear dimers is described. In neat methyl acrylate at 85°C the reaction shows turnover numbers of 300 in 20 h and 640 in 7 d. Mechanistic studies show that the initial step of the reaction is the reduction of H2Ru(PPh3)4 (1) by MA to form Ru(MA)2 (PPh3)2 (5). After activation with CF3SO3H the catalytically active species contains only one phosphane ligand. The basic mechanistic features of the dimerization reaction have been revealed by 2H NMR spectroscopy involving the use of CF3SO3D. The deuterium-labelling studies indicate the intermediate formation of a ruthenium(II) hydride complex. Subsequent olefin insertions in this complex, followed by β-hydride elimination,lead to the linear dimeric products.  相似文献   

11.
The diol R2C(SiMe2OH)2 (R = Me3Si) has been shown to react with: SO2Cl2 to give R2 Me2; SOCl2 to give R2C(SiMe2Cl)2; Me3SiI or Me3SiCl to give R2C(SiMe2OSiMe3)2; R′COCl; (R′ = Me or CF3) to give R2C(SiMe2O2CR′)-(SiMe2Cl); (R′CO)2O (R′ = Me or CF3 to give R2C(SiMe2O2CR′)2; with MeOH containing acid to give R2C(SiMe2OMe)2; with neutral MeOH to give R2C-(SiMe2OMe)2 and probably R2 Me2; MeLi to give R2C(SiMe2OLi)2 (and the latter to react with PhMeSiF2 to give R2 Me2). The diacetate R2C(SiMe2O2CMe)2 reacts with CsF in MeCN to give R2C(SiMe2F)2; it does not react with NaN3 or KSCN in MeCN, but the bis(trifluoroacetate) reacts with these salts with KOCN to give R2C(SiMe2X)2 (X = N3, NCS, NCO).  相似文献   

12.
The main product of the thermal reaction between the title oxatetraene (I) and Fe2(CO)9 in ether/pentane is the bimetallic complex (C10H10O)Fe2(CO)6-diexo (II), which has C symmetry both in the solid state (X-ray analysis) and in solution. Whereas the protonation of the free ligand leads usually to polymerisation, the addition of a protic acid such as CF3CO2H to II proceeds cleanly at 0°C giving first a (η 3-allyl)Fe(CO)3O2CCF3 complex (III). The intermediate III adds a second equivalent of acid in a slower step (k2/k1 = 0.1, CF3CO2D/CHCl3, 0°C) giving the trans-bis(η3-allyl) isomer IV with high regioselectivity. The addition of CF3CO2D yields the corresponding deuteriomethylallyliron tricarbonyl trifluoroacetates III′ and IV′. No further deuterium incorporation is observed at 0°C, thus confirming the kinetic control of the regioselective double addition of protic acid to II.  相似文献   

13.
Ab initio quantum chemical calculation were performed on R2N–O–NR2 type (R=H, F, CH3 and CF3) molecules, using the HF, B3LYP and MP2/6-31G* levels of theory. The equilibrium structures and the internal rotation potentials have been determined. Three stable conformers were found for R=H, F and CH3 while only two in case of R=CF3. The rotation potential energy curves do not change significantly upon fluorination. The calculations suggests that in the ED measurement of the title compound the NC and NO bond length might have been interchanged.  相似文献   

14.
The η3-allyliridium complexes [Ir(η3-2-RC3H4)(PiPr3)2] (2, 3) have been prepared in a one-pot reaction from [IrCl(C2H4)2]2, 2-RC3H4Li and PiPr3 in 70% yield. Compounds 2 and 3 react spontaneously with H2 to give [IrH5(PiPr3)2] (7) and with excess PhC=CH and MeCCH to give [Ir(CCPh)3(PiPr3)2] (5) and [Ir(CCMe)2(CMe=CH2)(PiPr3)2] (6), respectively. From 2 (or 3) and two equivalents of PhCCH the complex [IrH(CCPh)2(PiPr3)2] (4) has been obtained. Treatment of 2 or 3 with CF3CO2H does not lead to a cleavage of the allyl-metal bond but affords the allyl(hydrido)-iridium(III) complexes [IrH(η3-2-RC3H4)(η1-P2CCF3)(PiPr3)2] (8, 9) in almost quantitative yield.  相似文献   

15.
An X-ray crystal structure determination for the bimetallic complex Mn2(CO)8-[P(NMe2)3]2 reveals that the P(NMe2)3 ligands are trans to the Mn---Mn bond and the Mn---Mn bond distance is relatively long, 2.946(1) Å.  相似文献   

16.
Geometrical isomerization of fac-Mo(CO)3L3 (L = P(OPh)3, P(OMe)3, P(OEt)3) to the mer form and that of cis-Mo(CO)4L2 (L = P(OPh)3, P(OMe)3, PPh2(OMe)) to the trans form were observed in CH2Cl2 at room temperature in the presence of a catalytic amount of Me3SiOSO2CF3 (TMSOTf). Crossover experiments suggest that a ligand dissociation is not involved in the isomerization. A catalytic cycle involving an interaction of the silicon atom in Me3Si+ with one oxygen in P(OR)3 ligands has been proposed. The first isolation and the X-ray structure analysis were attained for mer-Mo(CO)3{P(OPh)3}3 through the TSMOTf-assisted isomerization of fac-Mo(CO)3{P(OPh)3}3.  相似文献   

17.
Both ionic [HgR(DMSO)][CF3SO3] (R = Me or Ph) and covalent HgMeI organomercury(II) compounds react with the tripodal ligand N(CH2CH2PPh2)3 (np3) to yield as ultimate products Hg(II) complexes, the new five-coordinated [Hg(OSO2CF3)(np3)]+ or the known tetrahedral [HgI(np3)]+ and symmetric diorganomercurials respectively. Monitoring of the reactions by 1H, 31P and 13C NMR spectroscopy has shown that the mechanistic pathways depend on the nature of the reagents.  相似文献   

18.
Cp2MoH2 reacts with methyl acrylate in the presence of acetylenes (L = C2H2, C2Me2, HCCtBu, HCCSiMe3, C2(SiMe3)2, HCCCH2OMe, HCCCH2NMe2) to form acetylene complexes Cp2Mo(L) 5. Protonation takes place with CF3CO2H at −80°C to give short-lived cations [Cp2MoH(L)+ (8) (L = C2Me2, HCCSiMe3, C2(SiMe3)2). The structure of [Cp2MoH{η2-C2(SiMe3)2}]PF6(9) was determined by an X-ray diffraction study.  相似文献   

19.
Anhydrous monoaryllead triacetates ArPb(OAc)3 (Ar = Ph, p-Tolyl, o-Tolyl, 2,5-Xylyl; OAc = OCOMe) were prepared by arylation of Pb(OAc)4 with ArSn(C4H9-n)3 in the presence of Hg(OCOCF3)2. The procedure was adapted for the synthesis of diaryllead diacetates Ar2Pb(OAc)2 (Ar = Ph, p-Tolyl, o-Tolyl, p-ClC6H4, o-ClC6H4) and afforded products with higher purity than other procedures. The crystal structures of PhPb(OAc)3, Ph2Pb(OAc)2 and (o-Tolyl)2Pb(OAc)2 were determined by X-ray diffraction. PhPb(OAc)3 and (o-Tolyl)2Pb(OAc)2 are monomeric. The pentagonal bipyramid around Pb in PhPb(OAc)3, like the trapezoidal bipyramid around Pb in (o-Tolyl)2Pb(OAc)2, is heavily distorted, the OAc groups being unsymmetrically chelating. Lead in Ph2Pb(OAc)2 is in a distorted octahedral environment. One OAc group is bridging, linking the molecular units to infinite chains, the other OAc group is symmetrically chelating. IR, 1H, 13C and 207Pb NMR spectroscopic data are reported. The structures of p-TolPb(OAc)3, o-TolPb(OAc)3 and 2,5-XylPb(OAc)3 are inferred to be similar to that of PhPb(OAc)3, and the structure of (o-ClC6H4)2Pb(OAc)2 is inferred to be similar to that of (o-Tolyl)2Pb(OAc)2.  相似文献   

20.
Peter C. Junk  Jonathan W. Steed   《Polyhedron》1999,18(27):4646-3597
[Co(η2-CO3)(NH3)4](NO3)·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O were prepared by prolonged aerial oxidation of a solution of Co(NO3)2·6H2O and ammonium carbonate in aqueous ammonia. The formation of these side products highlights the richness of the chemistry of these systems and the possibility of by products if methods are not strictly adhered to. The X-ray crystal structures of [Co(η2-CO3)(NH3)4][NO3]·0.5H2O and [(NH3)3Co(μ-OH)2(μ-CO3)Co(NH3)3][NO3]2·H2O reveal a monomeric octahedral cobalt center with η2-bound CO32− in the former, while the latter consists of a dimeric array where the two cobalt centers are bridged by two OH and one μ2-CO32− groups with three terminal NH3 ligands for each Co center. In both complexes extensive hydrogen bonding interactions are evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号