共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present a nonmonotone conic trust region method based on line search technique for unconstrained optimization. The new algorithm can be regarded as a combination of nonmonotone technique, line search technique and conic trust region method. When a trial step is not accepted, the method does not resolve the trust region subproblem but generates an iterative point whose steplength satisfies some line search condition. The function value can only be allowed to increase when trial steps are not accepted in close succession of iterations. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments are conducted to compare this method with the existing methods. 相似文献
2.
A trust region method based on interior point techniques for nonlinear programming 总被引:15,自引:0,他引:15
An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described. It applies sequential
quadratic programming techniques to a sequence of barrier problems, and uses trust regions to ensure the robustness of the
iteration and to allow the direct use of second order derivatives. This framework permits primal and primal-dual steps, but
the paper focuses on the primal version of the new algorithm. An analysis of the convergence properties of this method is
presented.
Received: May 1996 / Accepted: August 18, 2000?Published online October 18, 2000 相似文献
3.
A new trust region method with adaptive radius 总被引:2,自引:0,他引:2
In this paper we develop a new trust region method with adaptive radius for unconstrained optimization problems. The new method can adjust the trust region radius automatically at each iteration and possibly reduces the number of solving subproblems. We investigate the global convergence and convergence rate of this new method under some mild conditions. Theoretical analysis and numerical results show that the new adaptive trust region radius is available and reasonable and the resultant trust region method is efficient in solving practical optimization problems. The work was supported in part by NSF grant CNS-0521142, USA. 相似文献
4.
5.
Wai‐Ki Ching Michael K. Ng Wai‐On Yuen 《Numerical Linear Algebra with Applications》2005,12(10):957-966
In this paper, we present a direct method for solving linear systems of a block‐Toeplitz matrix with each block being a near‐circulant matrix. The direct method is based on the fast Fourier transform (FFT) and the Sherman–Morrison–Woodbury formula. We give a cost analysis for the proposed method. The method is then applied to solve the steady‐state probability distribution of a hybrid manufacturing system which consists of a manufacturing process and a re‐manufacturing process. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
6.
In this paper, we present a nonmonotone adaptive trust region method for unconstrained optimization based on conic model. The new method combines nonmonotone technique and a new way to determine trust region radius at each iteration. The local and global convergence properties are proved under reasonable assumptions. Numerical experiments show that our algorithm is effective. 相似文献
7.
Yigui Ou 《Applied Numerical Mathematics》2011,61(7):900-909
This paper presents a hybrid trust region algorithm for unconstrained optimization problems. It can be regarded as a combination of ODE-based methods, line search and trust region techniques. A feature of the proposed method is that at each iteration, a system of linear equations is solved only once to obtain a trial step. Further, when the trial step is not accepted, the method performs an inexact line search along it instead of resolving a new linear system. Under reasonable assumptions, the algorithm is proven to be globally and superlinearly convergent. Numerical results are also reported that show the efficiency of this proposed method. 相似文献
8.
A new trust region method for nonlinear equations 总被引:1,自引:0,他引:1
In this paper, a new trust region method for the system of nonlinear equations is presented in which the determining of the trust region radius incorporates the information of its natural residual. The global convergence is obtained under mild conditions. Unlike traditional trust region method, the superlinear convergence of the method is proven under the local error bound condition. This condition is weaker than the nondegeneracy assumption which is necessary for superlinear convergence of traditional trust region method. We also propose an approximate algorithm for the trust region subproblem. Preliminary numerical experiments are reported.
Acknowledgements.The authors are indebted to our supervisor, Professor Y.-X. Yuan, for his excellent guidance and Jorge J. Moré for his subroutine. And we would like to thank the referees for their valuable suggestions and comments. 相似文献
9.
A trust region and affine scaling interior point method for nonconvex minimization with linear inequality constraints 总被引:12,自引:0,他引:12
A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear minimization with linear
inequality constraints [8]. In the proposed approach, a Newton step is derived from the complementarity conditions. Based
on this Newton step, a trust region subproblem is formed, and the original objective function is monotonically decreased.
Explicit sufficient decrease conditions are proposed for satisfying the first order and second order necessary conditions.?The
objective of this paper is to establish global and local convergence properties of the proposed trust region and affine scaling
interior point method. It is shown that the proposed explicit decrease conditions are sufficient for satisfy complementarity,
dual feasibility and second order necessary conditions respectively. It is also established that a trust region solution is
asymptotically in the interior of the proposed trust region subproblem and a properly damped trust region step can achieve
quadratic convergence.
Received: January 29, 1999 / Accepted: November 22, 1999?Published online February 23, 2000 相似文献
10.
This paper introduces and analyses a new algorithm for minimizing a convex function subject to a finite number of convex inequality
constraints. It is assumed that the Lagrangian of the problem is strongly convex. The algorithm combines interior point methods
for dealing with the inequality constraints and quasi-Newton techniques for accelerating the convergence. Feasibility of the
iterates is progressively enforced thanks to shift variables and an exact penalty approach. Global and q-superlinear convergence is obtained for a fixed penalty parameter; global convergence to the analytic center of the optimal
set is ensured when the barrier parameter tends to zero, provided strict complementarity holds.
Received: December 21, 2000 / Accepted: July 13, 2001?Published online February 14, 2002 相似文献
11.
12.
This paper discusses nonlinear complementarity problems; its goal is to present a globally and superlinearly convergent algorithm for the discussed problems. Filter methods are extensively studied to handle nonlinear complementarity problem. Because of good numerical results, filter techniques are attached. By means of a filter strategy, we present a new trust region method based on a conic model for nonlinear complementarity problems. Under a proper condition, the superlinear convergence of the algorithm is established without the strict complementarity condition. 相似文献
13.
T. Bannert 《Mathematical Programming》1994,67(1-3):247-264
A trust region algorithm is proposed for minimizing the nonsmooth composite functionF(x) = h(f(x)), wheref is smooth andh is convex. The algorithm employs a smoothing function, which is closely related to Fletcher's exact differentiable penalty functions. Global and local convergence results are given, considering convergence to a strongly unique minimizer and to a minimizer satisfying second order sufficiency conditions. 相似文献
14.
给出了用共轭梯度法解信赖域子问题的重新开始策略,并证明了方法的收敛性,数值结果表明该策略可以大大提高算法的收敛速度. 相似文献
15.
On piecewise quadratic Newton and trust region problems 总被引:1,自引:0,他引:1
J. Sun 《Mathematical Programming》1997,76(3):451-467
Some recent algorithms for nonsmooth optimization require solutions to certain piecewise quadratic programming subproblems.
Two types of subproblems are considered in this paper. The first type seeks the minimization of a continuously differentiable
and strictly convex piecewise quadratic function subject to linear equality constraints. We prove that a nonsmooth version
of Newton’s method is globally and finitely convergent in this case. The second type involves the minimization of a possibly
nonconvex and nondifferentiable piecewise quadratic function over a Euclidean ball. Characterizations of the global minimizer
are studied under various conditions. The results extend a classical result on the trust region problem.
Partially supported by National University of Singapore under grant 930033. 相似文献
16.
Z. Akbari 《Optimization》2017,66(9):1519-1529
In this paper, we present a nonsmooth trust region method for solving linearly constrained optimization problems with a locally Lipschitz objective function. Using the approximation of the steepest descent direction, a quadratic approximation of the objective function is constructed. The null space technique is applied to handle the constraints of the quadratic subproblem. Next, the CG-Steihaug method is applied to solve the new approximation quadratic model with only the trust region constraint. Finally, the convergence of presented algorithm is proved. This algorithm is implemented in the MATLAB environment and the numerical results are reported. 相似文献
17.
Wu Qing-jun 《Applied mathematics and computation》2010,217(8):4274-4281
In this paper, a nonmonotone trust region algorithm for unconstrained optimization problems is presented. In the algorithm, a kind of nonmonotone technique, which is evidently different from Grippo, Lampariello and Lucidi’s approach, is used. Under mild conditions, global and local convergence results of the algorithm are established. Preliminary numerical results show that the new algorithm is efficient. 相似文献
18.
This paper investigates the global convergence of trust region (TR) methods for solving nonsmooth minimization problems. For a class of nonsmooth objective functions called regular functions, conditions are found on the TR local models that imply three fundamental convergence properties. These conditions are shown to be satisfied by appropriate forms of Fletcher's TR method for solving constrained optimization problems, Powell and Yuan's TR method for solving nonlinear fitting problems, Zhang, Kim and Lasdon's successive linear programming method for solving constrained problems, Duff, Nocedal and Reid's TR method for solving systems of nonlinear equations, and El Hallabi and Tapia's TR method for solving systems of nonlinear equations. Thus our results can be viewed as a unified convergence theory for TR methods for nonsmooth problems.Research supported by AFOSR 89-0363, DOE DEFG05-86ER25017 and ARO 9DAAL03-90-G-0093.Corresponding author. 相似文献
19.
In this paper, we present a nonmonotone filter trust region algorithm for solving nonlinear equality constrained optimization. Similar to Bryd–Omojokun class of algorithms, each step is composed of a quasi-normal step and a tangential step. This new method has more flexibility for the acceptance of the trial step compared to the filter methods, and requires less computational costs compared with the monotone methods. Under reasonable conditions, we give the globally convergence properties. Numerical tests are presented that confirm the efficiency of the approach. 相似文献
20.
We introduce a trust region algorithm for minimization of nonsmooth functions with linear constraints. At each iteration,
the objective function is approximated by a model function that satisfies a set of assumptions stated recently by Qi and Sun
in the context of unconstrained nonsmooth optimization. The trust region iteration begins with the resolution of an “easy
problem”, as in recent works of Martínez and Santos and Friedlander, Martínez and Santos, for smooth constrained optimization.
In practical implementations we use the infinity norm for defining the trust region, which fits well with the domain of the
problem. We prove global convergence and report numerical experiments related to a parameter estimation problem.
Supported by FAPESP (Grant 90/3724-6), FINEP and FAEP-UNICAMP.
Supported by FAPESP (Grant 90/3724-6 and grant 93/1515-9). 相似文献