首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the heat capacity of bis(η6-o-xylene)chromium(I) fulleride, [(η6-(o-xylene))2Cr]+?[C60]??, over the temperature range 6–340 K was measured on an adiabatic vacuum calorimeter. The low-temperature (20 K ≤ T ≤ 50 K) heat capacity was subjected to multifractal processing; conclusions about the heterodynamic character of the structure were drawn. The experimental data were used to calculate the standard thermodynamic functions C p ° (T), H °(T)-H °(0), S °(T), and G °(T)-H °(0) over the temperature range from T → 0 to 340 K and estimate the standard entropy of fulleride formation from simple substances at 298.15 K. The standard thermodynamic characteristics of [(η6-(o-xylene))2Cr]+?[C60]?? were compared with those of the initial fullerene C60.  相似文献   

2.
The temperature dependence of heat capacity C p o = f (T) of second generation hard poly(phenylene-pyridyl) dendrimer (G2-24Py) was measured by a adiabatic vacuum calorimeter over the temperature range 6–320 K for the first time. The experimental results were used to calculate the standard thermodynamic functions: heat capacity C p o (T), enthalpy H o(T)–H o(0), entropy S o(T)–S o(0) and Gibbs function G o(T)–H o(0) over the range from T → 0 K to 320 K. The standard entropy of formation at T = 298.15 K of G2-24Py was calculated. The low-temperature heat capacity was analyzed based on Debye’s heat capacity theory of solids. Fractal treatment of the heat capacity was performed and the values of the temperature characteristics and fractal dimension D were determined. Some conclusions regarding structure topology are given.  相似文献   

3.
The temperature dependence of heat capacity of C70 fullerene was studied by calorimetry in the range between 6 and 390 K. Phase transitions were established and their thermodynamic characteristics were determined. From the experimental data obtained, the thermodynamic functionsH o (T)-H o(0),S o(T),G o(T)-H o(0) for temperatures between 0 and 390 K were calculated. The results were used to calculate the standard values of Δf S o, Δf G o, and logK f o for the formation of C70 from graphite. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 647–650, April, 1998.  相似文献   

4.
The temperature dependence of the heat capacity C p o = f(T) of crystalline calcium-zirconium phosphate was studied over the temperature range 7–650 K by precision adiabatic vacuum and dynamic scanning calorimetry. The experimental data were used to calculate the standard thermodynamic functions C p o (T), H o(T) ? H o(0), S o(T), and G o(T) ? H o(0) at temperatures from T → 0 to 650 K and the standard entropy of formation of Ca0.5Zr2(PO4)3 at T = 298.15 K. The data on low-temperature (30 K ≤ T ≤ 50 K) heat capacity were used to calculate fractal dimension D. Conclusions about the character of the topology of the structure of the phosphate were drawn.  相似文献   

5.
The temperature dependence of heat capacity C p o = f(T) of fullerene derivative (t-Bu)12C60 has been measured by a adiabatic vacuum calorimeter over the temperature range T = 6–350 K and by a differential scanning calorimeter over the temperature range T = 330–420 K for the first time. The low-temperature (T ≤ 50 K) dependence of the heat capacity was analyzed based on Debye’s the heat capacity theory of solids and its fractal variant. As a consequence, the conclusion about structure heterodynamicity is given. The experimental results have been used to calculate the standard thermodynamic functions C p o (T), H o(T)−H o(0), S o(T) and G o(T) − H o(0) over the range from T → 0 to 420 K. The standard entropy of formation at 298.15 K of fullerene derivative under study was calculated. The temperature of decomposition onset of derivative was determined by differential scanning calorimetery and thermogravimetric analysis. The standard thermodynamic characteristics of (t-Bu)12C60 and C60 fullerite were compared.  相似文献   

6.
The heat capacity of (g?,g?′-dipyridyl)bis(4-methoxy-3,6-di-tert-butyl-o-benzosemiquinone)cobalt over the temperature range 7–320 K was studied by precision adiabatic vacuum calorimetry. A physical transformation observed at 134–222 K accompanied the reversible transition of the semiquinone-catecholate complex of low-spin cobalt into the bis-semiquinone adduct of high-spin cobalt. The enthalpy and entropy of this redox-isomeric transition were determined. The data obtained were used to calculate the standard thermodynamic functions of the complex, C p o (T), Ho(T)-Ho(0), So(T), and G o (T)-H o (0), over the temperature range from T → 0 to 320 K. The low-temperature heat capacity of the complex was analyzed using the Debye theory of the heat capacity of solids and its multifractal generalization. The conclusion was drawn that the complex had a predominantly chain structure.  相似文献   

7.
The heat capacity of triphenylantimony diacrylate Ph3Sb(O2CCH=CH2)2 was studied in an adiabatic vacuum calorimeter at 6?C350 K and differential scanning calorimeter at 330?C450 K. Melting was revealed at these temperatures; the melting point was estimated at 428.4 ± 0.5 K. It was accompanied by the partial decomposition of the substance. The low-temperature (20 K ?? T ?? 50 K) heat capacity was treated using the Debye theory of the heat capacity of solids and its multifractal model. The type of the structure topology was determined. The standard thermodynamic functions C p o (T), H o(T) ? H o(0), S o(T), and G o(T) ? H o(0) of the compound in the crystal state were calculated from the obtained experimental data in the range from T ?? 0 to 428 K. The standard entropy of the formation of the crystalline compound Ph3Sb(O2CCH=CH2)2 at T = 298.15 K was determined.  相似文献   

8.
The heat capacity of paramagnetic (2,2′-dipyridyl)bis(4-chloro-3,6-di-tert-butyl-o-benzosemi-quinone)cobalt was studied over the temperature range 8–390 K by precision adiabatic vacuum and high-accuracy dynamic calorimetry. The physical transformation observed at 309–388 K was caused by the transition of the semiquinone-catecholate to bis-semiquinone form of the complex. Above 388 K, thermal destruction was superimposed on the physical transition. The experimental data were used to calculate the standard thermodynamic functions C p o (T), H o(T)−H o(0), S o(T), and G o(T)−H o(0) at temperatures from T → 0 to 300 K. An analysis of the low-temperature heat capacity of the complex in terms of the Debye theory of the heat capacity of solids and its multifractal generalization led us to conclude that the complex had a predominantly chain structure.  相似文献   

9.
The temperature dependence of the heat capacity C p o= f(T) 2 of 2-ethylhexyl acrylate was studied in an adiabatic vacuum calorimeter over the temperature range 6–350 K. Measurement errors were mainly of 0.2%. Glass formation and vitreous state parameters were determined. An isothermic shell calorimeter with a static bomb was used to measure the energy of combustion of 2-ethylhexyl acrylate. The experimental data were used to calculate the standard thermodynamic functions C p o(T), H o(T)-H o(0), S o(T)-S o(0), and G o(T)-H o(0) of the compound in the vitreous and liquid states over the temperature range from T → 0 to 350 K, the standard enthalpies of combustion Δc H o, and the thermodynamic characteristics of formation Δf H o, Δf S o, and Δf G o at 298.15 K and p = 0.1 MPa.  相似文献   

10.
The temperature dependence of the heat capacity of crystalline barium zirconium phosphate C p o  = f(T) was measured over the temperature range 6–612 K. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H°(T) ? H°(0), S°(T), G°(T) ? H°(0) over the temperature range from T → 0 to 610 K and standard entropy of formation at 298.15 K. The data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity were used to determine the fractal dimension of Ba0.5Zr2(PO4)3. Conclusions concerning the topology of the structure of phosphate were drawn. Thermodynamic properties of M0.5Zr2(PO4)3 (M = Ca, Sr, Ba) were compared.  相似文献   

11.
The heat capacity of a glassy third-generation poly(phenylene-pyridyl) dendron decorated with dodecyl groups is studied for the first time via high-precision adiabatic vacuum and differential scanning calorimetry in the temperature range of 6 to 520 K. The standard thermodynamic functions (molar heat capacity Cp°, enthalpy H°(T), entropy S°(T), and Gibbs energy G°(T)-H°(0)) in the range of T → 0 to 480 K, and the entropy of formation at 298.15 K, are calculated on the basis of the obtained data. The thermodynamic properties of the dendron and the corresponding third-generation poly(phenylene-pyridyl) dendrimer studied earlier are compared.  相似文献   

12.
The heat capacity of di-(2-pyridyl)amine-bis-(4-methoxy-3,6-di-tert-butyl-o-benzosemiquinone)cobalt in the temperature range from 7 to 370 K was investigated by means of precise adiabatic vacuum calorimetry. It was established that the phase transition associated with the redox-isomeric transformation of the semiquinone-catecholate form of the complex into the bis-semiquinone form is observed above 260 K; this transition is not completed due to thermal destruction that begins at 367 K. The magnetic moment values in the temperature range from 5 to 350 K and the EPR spectra in the temperature range from 130 to 290 K, which confirm the nature of the phase transition, were obtained for the investigated complex. The standard thermodynamic functions C p pO (T), H○(T)-H○(0), S○(T), and G○(T)-H○(0), were calculated from the data on heat capacity in the temperature range from T → 0 to 260 K. Analysis of the low temperature heat capacity on the basis of Debye’s theory of the heat capacity of solids and the multifractional model testifies to the chain-layered structural topology of the investigated complex.  相似文献   

13.
In the present work lithium (sodium) vanadium tungsten oxides with brannerite structure is refined by the Rietveld method (space group C2/m, Z=2). IR and Raman spectroscopy was used to assign vibrational bands and determine structural particularities. The diffuse reflectance spectra allow to calculate bandgap for MIVWO6(MI – Li, Na). The temperature dependences of heat capacity have been measured first in the range from 7 to 350 K for these compounds and then between 330 and 640 K, respectively, by precision adiabatic vacuum and dynamic calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity Cpo(T), enthalpy Ho(T)−Ho(0), entropy So(T)−So(0) and Gibbs function Go(T)−Ho(0), for the range from T→0 to 640 K. The differential scanning calorimetry was applied to measure decomposition temperature of compounds under study.  相似文献   

14.
The temperature dependence of the heat capacity C p o of the [(Me3Si)7C60]2 fullerene complex was measured for the first time using precision adiabatic vacuum calorimetry over the temperature range 6.7–340 K and high-accuracy differential scanning calorimetry at 320–635 K. For the most part, the error in the C p o values was about ±0.5%. An irreversible endothermic effect caused by the splitting of the dimeric bond between fullerene fragments and the thermal decomposition of the complex was observed at 448–570 K. The thermodynamic characteristics of this transformation were calculated and analyzed. Multifractal analysis of the low-temperature (T < 50 K) heat capacity was performed, and conclusions were drawn concerning the character of the heterodynamicity of the structure. The experimental data obtained were used to calculate the standard thermodynamic functions C p o (T), H o (T) ? H o (0), S o (T) ? S o (0), and G o (T) ? H o (0) over the temperature range from T → 0 to 445 K and estimate the standard entropy of formation of the compound from simple substances at 298.15 K. The standard thermodynamic properties of [(Me3Si)7C60]2 are compared with those of the (C60)2 dimer, the [(η6-Ph2)2Cr]+[C60]?? fulleride, and the initial C60 fullerene.  相似文献   

15.
The temperature dependence of the heat capacity C p = f(T) of CaNi0.5Zr1.5(PO4)3 crystalline phosphate is studied by precision adiabatic vacuum and differential scanning calorimetry over the temperature range of 7–640 K. Its standard thermodynamic functions C p (T), H (T)-H (0), S (T), and G (T)-H (0) for the region T → 0 to 640 K and the standard entropy of formation at T = 298.15 K are calculated from the obtained experimental data. Using data on the low-temperature (30–50 K) heat capacity, the D fractal dimension of phosphate is determined and conclusions about the character of the topology of its structure have been made. The final results are compared to data from thermodynamic investigations of the structurally related crystalline phosphates Zr3(PO4)4, Ni0.5Zr2(PO4)3, and Ca0.5Zr2(PO4)3.  相似文献   

16.
By adiabatic vacuum and dynamic calorimetry, heat capacity for poly[bis(trifluoroethoxy)phosphazene] has been determined over the 6–620 K range. Physical transformations of the polymer on its heating and cooling have been detected and characterized. Smoothed heat capacity C p0(T) and standard thermodynamic functions (H 0(T)-H 0(0), S 0(T) and G 0(T)-H 0(0)) of poly[bis(trifluoroethoxy)phosphazene] have been evaluated for the temperature range from T→0 to 560 K. The standard entropy of formation Δf S 0 at T=298.15 K has been also determined. Fractal dimensions D in the heat capacity function of the multifractal variant of Debye’s theory of heat capacity of solids characterizing the heterodynamics of the tested polymer have been determined.  相似文献   

17.
The thermodynamic properties of carbosilane dendrimer of second generation with terminal methoxyundecylene groups were studied between 6 and 340 K by adiabatic vacuum calorimetry: the temperature dependence of the molar heat capacity Cp 0 was measured, the physical transformations were established and their thermodynamic characteristics were obtained. The experimental data were used to calculate the thermodynamic functions Cp 0 (T), H 0(T)-H 0(0), S0(T), G 0(T)-H 0(0) of the compound in the range 0 to 340 K. from the relation Cp 0 (T) the fractal dimension of the dendrimer was experimentally determined. The heat capacity of the dendrimer was compared with the corresponding additive values calculated from the properties of its constituents - a dendritic matrix (carbosilane dendrimer of second generation) and the corresponding amount of moles of methyl ester of 11-(tetramethyldisiloxy)undecanoic acid serving as terminal groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The temperature dependence of the heat capacity C p o = f(T) of palladium oxide PdO(cr.) was studied for the first time in an adiabatic vacuum calorimeter in the range of 6.48–328.86 K. Standard thermodynamic functions C p o(T), H o(T) — H o(0), S o(T), and G o(T) — H o(0) in the range of T → 0 to 330 K (key quantities in different thermodynamic calculations with the participation of palladium compounds) were calculated on the basis of the experimental data. Based on an analysis of studies on determining the thermodynamic properties of PdO(cr.), the following values of absolute entropy, standard enthalpy, and Gibbs function of the formation of palladium oxide are recommended: S o(298.15) = 39.58 ± 0.15 J/(K mol), Δf H o(298.15) = −112.69 ± 0.32 kJ/mol, Δf G o(298.15) = −82.68 ± 0.35 kJ/mol. The stability of Pd(OH)2 (amorph.) with respect to PdO(cr.) was estimated.  相似文献   

19.
The temperature dependence of the molar heat capacity (C0 p) of hydrofullerene C60H36 between 5 and 340 K was determined by adiabatic vacuum calorimetry with an error of about 0.2%. The experimental data were used for the calculation of the thermodynamic functions of the compound in the range 0 to340 K. It was found that at T=298.15 K and p=101.325 kPa C0 p (298.15)=690.0 J K−1 mol−1,Ho(298.15)−Ho(0)= 84.94 kJ mol−1,So(298.15)=506.8 J K−1 mol−1, Go(298.15)−Ho(0)= −66.17 kJ mol−1. The standard entropy of formation of hydrofullerene C60H36 and the entropy of reaction of its formation by hydrogenation of fullerene C60 with hydrogen were estimated and at T=298.15 K they were ΔfSo= −2188.4 J K−1 mol−1 and ΔrSo= −2270.5 J K−1mol−1, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Temperature dependences of the heat capacities of disordered graphite-like nanostructures prepared by the thermobaric treatment of fullerite C60 (p = 2 and 8 GPa, T = 1373 K) were measured in the temperature ranges from 7 to 360 K in an adiabatic vacuum calorimeter and from 330 to 650 K in a differential scanning calorimeter. At T < 50 K, the dependences obtained were analyzed using the Debye theory of the heat capacity of solids and its multifractal version. The fractal dimensions D were determined and some conclusions on the heterodynamic character of the structures studied were made. The thermodynamic functions C p o T), H o(T) − H o(0), S o(T) − S o(0), and G o(T) − H o(0) were calculated in the temperature range from T → 0 to 610 (650) K. The thermodynamic properties of the graphite-like nanostructures studied and some carbon allotropes were compared. The standard entropies of formation Δf S o of the graphite nanostructures studied and diamond were calculated along with the standard entropies of the reactions of their synthesis from the face-centered cubic phase of fullerite C60 and their interconversions at T = 298.15 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1940–1945, September, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号