首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Douglas P  Stokes RJ  Graham D  Smith WE 《The Analyst》2008,133(6):791-796
A micro-bead sandwich assay for P38 mitogen-activated protein kinase using surface enhanced resonance Raman spectroscopy (SERRS) detection is reported. Monoclonal capture antibodies were immobilised on a solid phase of magnetic micro-beads with secondary detection using a rhodamine-labelled antibody. Quantitative SERRS detection of the secondary antibody was possible with a limit of detection of 9.5 x 10(-12) mol dm(-3). The sandwich assay was quantitative and sensitive to 6 ng ml(-1). The mechanism of the SERRS detection in the immunoassay was investigated. The addition of SERRS aggregating agents causes the dissociation of the immuno-complex from the magnetic beads. Scanning electron microscopy images indicate that the colloidal suspension rather than adsorbed silver nanoparticles on the beads provide the SERRS signals, that the aggregate size is partially controlled and that there is some inhomogeneity in the distribution of organic matter on the nanoscale.  相似文献   

2.
The influence of sodium thiosulfate (THS) concentration in Ag colloid/THS/H(2)TMPyP and Ag colloid/H2TMPyP/THS systems (H2TMPyP = 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin) was investigated by a combination of surface-enhanced resonance Raman scattering (SERRS) spectroscopy, surface plasmon extinction (SPE) measurements, and transmission electron microscopy (TEM). THS was found to have a strong impact on Ag nanoparticle surface structure and aggregation state and on interaction with H2TMPyP probe molecules, as evidenced by variations of the SERRS spectrum. In the Ag colloid/THS/H2TMPyP system, when laser-ablated Ag colloid was THS pretreated prior to the porphyrin addition, a critical threshold THS concentration (4 x 10(-5) M) was discovered. At concentrations below the threshold, THS mainly reduces the number of Ag+ adsorption sites. This leads to increased Ag nanoparticle aggregation prior to the porphyrin addition and significant weakening of the overall SERRS signal. Dominant contributions in the SERRS spectrum correspond to free base H2TMPyP and Ag+ containing the AgTMPyP form. At concentrations above the threshold, THS mediates also the formation and stabilization of new adsorption sites, probably Ag(0) sites. This induces a turn in the aggregation state of the pretreated Ag-c/THS system, an increase of the overall SERRS signal, and the appearance of a new spectral form of Ag metalated porphyrin.  相似文献   

3.
The dye nuclear fast red has been detected and determined semi-quantitatively by means of surface enhanced resonance Raman scattering (SERRS) and surface enhanced Raman scattering (SERS), using laser exciting wavelengths of 514.5 and 632.8 nm, respectively, by employing a citrate-reduced silver colloid. A good linear correlation is observed for the dependence of the intensities of the SERRS bands at 989 cm−1 (R=0.9897) and 1278 cm−1 (R=0.9872) on dye concentration over the range 10−9 to 10−7 M, when using an exciting wavelength of 514.5 nm. At dye concentrations above 10−7 M, the concentration dependence of the SERRS signals is non-linear. This is almost certainly due to the coverage of the colloidal silver particles being in excess of a full monolayer of the dye. A linear correlation is also observed for the dependence of the intensities of the SERS bands at 989 cm−1 (R=0.9739) and 1278 cm−1 (R=0.9838) on the dye concentration over the range 10−8 to 10−6 M when using an exciting wavelength of 632.8 nm. Strong fluorescence prevented collection of resonance Raman scattering (RRS) spectra from powdered samples or aqueous solutions of the dye using an exciting wavelength of 514.5 nm, but weak bands were observed in the spectra obtained from both powdered and aqueous samples of the dye using an exciting wavelength of 632.8 nm. A study of the pH dependence of SERRS/SERS and UV–VIS absorption spectra revealed the presence of different ionisation states of the dye. The limits of detection for nuclear fast red by SERRS (514.5 nm), SERS (632.8 nm) and visible spectroscopy (535 nm) are 9, 89 and 1000 ng ml−1, respectively.  相似文献   

4.
High-resolution resonance Raman (RR) and resonance Raman optical activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein backbone. Combining the intrinsic resonance properties of cytochrome c with the surface plasmon enhancement achieved with colloidal silver particles, the surface enhanced resonance Raman scattering (SERRS) and surface enhanced resonance ROA (SERROA) spectra of the protein were successfully obtained at concentrations as low as 1 microM. The assignments of spectral features were based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported, while some disparities were observed between the resonance ROA and SERROA spectra. These differences can be ascribed to perturbations of the physical properties of the protein upon adhesion to the surface of the silver colloids.  相似文献   

5.
Surface-enhanced Raman scattering (SERS) of 2-benzoylpyridine (2-BP) adsorbed on silver hydrosols has been investigated. It has been observed that with a small change in the adsorbate concentration, the SER spectra of 2-BP show significant change in their features, indicating different orientational changes of the different part of the flexible molecule on the colloidal silver surface with adsorbate concentration. The time dependence of the SER spectra of the molecule has been explained in terms of aggregation of colloidal silver particles and co-adsorption and replacement kinetics of the adsorbed solute and solvent molecules on the silver surface. The broad long-wavelength band in the absorption spectra of the silver sol due to solute-induced coagulation of colloidal silver particles is found to be red-shifted with the increase in adsorbate concentration. The surface-enhanced Raman excitation profiles indicate that the resonance of the Raman excitation radiation with the new aggregation band contributes more to the SERS intensity than that with the original sol band.  相似文献   

6.
The application of surface enhanced resonance Raman spectroscopy (SERRS) to the semi-quantitative analysis of the dye, indigo carmine, has been examined using citrate-reduced silver colloids. Good linear correlations are observed for the dye band at 1580 cm(-1) in the concentration range 10(-7)-10(-5) and 10(-9)-10(-5) mol dm(-3), using laser exciting wavelengths of 514.5 [(R=0.9983)] and 632.8 nm [(R=0.9978)], respectively. At concentrations of dye above 10(-6) M the concentration dependence of the SERRS signals is non-linear due to the coverage of the surface of the colloidal particles by the dye being in excess of a full monolayer. At concentrations above 10(-6) M resonance Raman spectroscopy (RRS) can be employed for the quantitative analysis of the dye. An internal standard was used and a good linear correlation (R=0.997) was observed for the dependence of dye signal intensities at 1580 cm(-1) in the concentration range 10(-5)-10(-4) M using a laser exciting wavelength of 514.5 nm. The limits of detection of indigo carmine by SERRS (514.5 nm), SERRS (632.8 nm) and solution RRS (514.5 nm) are found to be 0.9, 1 and 38 ppm, respectively.  相似文献   

7.
In this paper we report for the first time semi-quantitative analysis of indigo using surface enhanced Raman spectroscopy (SERS) and surface enhance resonance Raman spectroscopy (SERRS). Indigo, a dye widely used today in the textile industry, has been used, historically, both as a dye and as a pigment; the latter in both paintings and in printed material. The molecule is uncharged and largely insoluble in most solvents. The application of SERS/SERRS to the semi-quantitative analysis of indigo has been examined using aggregated citrate-reduced silver colloids with appropriate modifications to experimental protocols to both obtain and maximise SERRS signal intensities. Good linear correlations are observed for the dependence of the intensities of the SERRS band at 1151 cm(-1) using laser exciting wavelengths of 514.5 nm (R=0.9985) and 632.8 nm (R=0.9963) on the indigo concentration over the range 10(-7)-10(-5) and 10(-8)-10(-5) mol dm(-3), respectively. Band intensities were normalised against an internal standard (silver sol band at 243 cm(-1)). Resonance Raman spectra (RRS) of aqueous solutions of indigo could not be collected because of its low solubility and the presence of strong fluorescence. It was, however, possible to obtain RS and RRS spectra of the solid at each laser excitation wavelength. The limits of detection (L.O.D.) of indigo by SERS and SERRS using 514.5 and 632.8 nm were 9 ppm at both exciting wavelengths. Signal enhancement by SERS and SERRS was highly pH dependent due to the formation of singly protonated and possibly doubly protonated forms of the molecule at acidic pH. The SERS and SERRS data provide evidence to suggest that an excess of monolayer coverage of the dye at the surface of silver colloids is observed at concentrations greater than 7.85x10(-6) mol dm(-3) for each exciting wavelength. The data reported herein also strongly suggest the presence of multiple species of the indigo molecule.  相似文献   

8.
Colloidal silver nanoparticles were prepared by reducing silver nitrate with sodium borohydride. The synthesized silver particles show an intense surface plasmon band in the visible region. The work reported here describes the interaction between nanoscale silver particles and various DNA bases (adenine, guanine, cytosine, and thymine), which are used as molecular linkers because of their biological significance. In colloidal solutions, the color of silver nanoparticles may range from red to purple to orange to blue, depending on the degree of aggregation as well as the orientation of the individual particles within the aggregates. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and absorption spectroscopy were used to characterize the assemblies. DNA base-induced differential silver nanoparticle aggregation was quantified from the peak separation (relates to color) of surface plasmon resonance spectroscopy (SPRS) and the signal intensity of surface-enhanced Raman scattering (SERS), which rationalize the extent of silver-nucleobase interactions.  相似文献   

9.
The influence of pH on the redox properties of cytochrome c (cyt c) adsorbed on roughened silver electrodes chemically modified with a self-assembled monolayer (SAM) of 11-mercapto-1-undecanoic acid (MUA) was studied with voltammetric techniques in combination with surface-enhanced resonance Raman scattering (SERRS). The experiments were performed simultaneously on the same electrode sample in a homemade spectroelectrochemical cell suitable for such applications. At pH 7.0 cyt c was found in its native state; at higher pH values (ranging from 8.0 to 9.0) the redox properties of the adsorbed protein varied considerably, featuring a redox behavior which does not resemble the one reported for the alkaline transition. Our results instead indicate the presence of an electrochemically inactive 6cLS species immobilized on MUA at pH 9.0. The pH-induced conformational changes observed for cyt c immobilized on the SAM of MUA were found to be repeatable and chemically reversible, meaning that the recovery of the electrochemical signal due to the native protein occurred instantaneously (on the second time scale) when the electrode was switched back to pH 7.0. The pH-induced changes observed were attributed to a conformational change involving a heme reorientation with respect to the electrode surface.  相似文献   

10.
To combine voltammetric techniques with surface-enhanced resonance Raman scattering (SERRS), cytochrome c (cyt c) was immobilized on a roughened silver electrode chemically modified with a self-assembled monolayer (SAM) of 4-mercaptopyridine (PySH). All measurements were performed on the same electrode in a homemade spectroelectrochemical cell suitable for such applications. Cyt c on a PySH-SAM shows a quasi-reversible, monoelectronic, adsorption-controlled CV response with a formal reduction potential of -0.061 V (vs SCE), which is comparable to the values found for native cyt c adsorbed on different SAMs. SERRS spectra proved that cyt c adsorbed on a PySH monolayer is present in the native conformer (the B1 state). Voltammetric and SERRS experiments at high ionic strength revealed that the interaction between the SAM and the protein is electrostatic in nature. In conclusion, PySH was found to be suitable for adsorption of cyt c at SERRS-active silver surfaces. In comparison with other SAMs, PySH requires less time (10 min vs 12-18 h) to form a long-time durable and reproducible coating on the roughened electrode surface.  相似文献   

11.
Resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) of 4'-(N,N'-dimethylaminostyryl)-4-propylpyridinium bromide (hemicyanine, HC dye) in acetonitrile solution and on a colloidal silver surface have been investigated. The structure of the dye in the ground (S0) and excited (S1) electronic states was optimized using density functional calculations along with the B3LYP and the configuration interaction with the singlet excitation (CIS) methods, respectively, using the 6-31G basis set. The vibrational frequencies of the molecule were computed at the optimized geometry and compared with the observed Raman bands. A complete normal-mode analysis has been carried out because it is essential for the accurate assignment of the vibrational spectra. From the observed enhancement along various in-plane and out-of-plane vibrations in the SERRS spectrum and from theoretical calculations, it has been inferred that the interaction with the silver surface occurs via the nitrogen lone pair of the pyridyl or the dimethylamino group of the molecule with a tilted orientation. The observed red-shifts in the SERRS spectrum along various vibrations indicate strong interaction (chemisorption) of the HC dye with the silver surface. This is also supported by the presence of a Ag-N stretching vibration at 241 cm(-1). The effect of the dye concentration on the orientation of the molecule is also discussed.  相似文献   

12.
The synthesis of seven monoazo benzotriazole dyes for use in surface enhanced resonance Raman scattering, SERRS, is reported. The dyes are all capable of complexing to the silver surface used to provide the surface enhancement found in SERRS and hence act as 'model' analytes. One dye was examined in detail and showed a quantitative relationship between concentration and signal intensity.  相似文献   

13.
The surface-enhanced resonance Raman scattering (SERRS) activity of a statistically significant number of silver nanoparticles has been studied using a correlated SERRS mapping and transmission electron microscopy (TEM) method. TEM allowed the nature of each entity to be directly identified, and the SERRS activity was obtained from the corresponding SERRS map. Particles in various states of aggregation were analyzed to establish relative activities. It was established that SERRS activity is dependent on the specific batch of colloid tested. By averaging different colloid batches, it was shown that increasing SERRS activity is observed with increasing numbers of particles in the aggregates. By reducing the surface coverage of the particles to the extent that single moieties could be examined optically, the ratio of the relative activities of single particles, dimers, trimers, and larger aggregates was estimated. High-resolution TEM images of a number of active and inactive particles are reported. However, no clear correlation between microstructure and SERRS activity was observed.  相似文献   

14.
Aggregation of silver colloidal particles in the hydrosol via chemisorption of octadecanethiol (ODT) molecules was investigated based on in situ UV–visible transmission and infrared attenuated total reflection (ATR) measurements. As‐prepared silver hydrosol exhibits a single absorption peak at 395 nm because of the plasma resonance of the metal particles. Upon addition of ODT‐dissolved ethanol to the hydrosol, the resonance band red‐shifts and broadens, the detailed features of which depend on the ODT concentration and elapsed time. Both the red‐shift and the broadening are attributed to particle aggregation in the solution via ODT chemisorption. Aggregation on a germanium prism surface by the addition of ODT‐dissolved ethanol to the hydrosol was investigated using infrared ATR spectroscopy. At moderate ODT concentrations, intense aggregation via ODT chemisorption occurs strongly on the prism surface, allowing observation of ODT absorption bands. Angle‐dependent infrared ATR measurements for the ethanol and ODT molecules at the prism/solution interface clearly show that aggregation on the prism surface proceeds via the exclusion of ethanol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The synthesis, spectroscopic characterization and surface-enhanced spectroscopy of a new electro active organic material bis (benzimidazo) thioperylene (Monothio BZP) are reported. Langmuir monolayers of Monothio BZP were successfully formed on water subphase and characterized by the pi-A surface-pressure area isotherm. Langmuir-Blodgett (LB) monomolecular layers of Monothio BZP were fabricated onto glass substrates and onto silver island films for surface-enhanced spectroscopic studies. The results of surface-enhanced resonance Raman scattering (SERRS), SERRS imaging and surface-enhanced fluorescence (SEF) studies for Monothio BZP LB monolayers are reported. Raman imaging (global imaging and point-by-point mapping) of the SERRS signal for a single monomolecular layer on silver islands were obtained using the 514.5 nm laser line. The SERRS imaging permits a visualization of the variation of the SERRS intensity across of the rough metal surface. The SEF was recorded for the excimer emission of aggregates in the LB film. The distance dependence and the enhancement factor of SEF were determined using fatty acid spacing layers. A temperature dependence study of the LB monolayer SERRS and SEF spectra was carried out between -190 degrees and + 200 degrees C confirming the thermal stability of the LB monolayer on silver. The specificity and the sensitivity of SERRS signal on metal island films was probed using mixed LB films with 0.01% molecular ratio of Monothio BZP in Arachidic Acid (AA). The micro-Raman SERRS spectra from ca. 10(-3) attomole of the dye were recorded.  相似文献   

16.
We report the surface-enhanced Raman spectra of ethylene and acetylene adsorbed on colloidal silver particles formed by gas aggregation and isolated at low temperatures in solid adsorbate/argon matrices. The spectra of both molecules exhibit modes which are normally Raman-forbidden. Excitation with several visible laser frequencies indicated that the degree of enhancement increased towards the blue.  相似文献   

17.
Faulds K  Stewart L  Smith WE  Graham D 《Talanta》2005,67(3):667-671
The detection of dye labelled DNA by surface enhanced resonance Raman scattering (SERRS) is reported. The dye labels used are commercially available and have not previously been used as SERRS dyes. Detection limits using two excitation frequencies were determined for each label. This expands the range of labels which can be used for surface enhanced resonance Raman scattering with silver nanoparticles.  相似文献   

18.
Surface-enhanced Raman spectra (SERS) of 5,10,15,20-tetrakis(1-decylpyridium-4-yl)-21H,23H-porphintetrabromide or Por 10 (H(2)Tdpyp) adsorbed on silver hydrosols are compared with the FTIR and resonance Raman spectrum (RRS) in the bulk and in solution. Comparative analysis of the RR and the FTIR spectra indicate that the molecule, in its free state, has D(2h) symmetry rather than C(2v). The SERS spectra, obtained on adsorption of this molecule on borohydride-reduced silver sol, indicate the formation of silver porphyrin. With the change in the adsorbate concentration, the SERS shows that the molecule changes its orientation on the colloidal silver surface. The appearance of longer wavelength band in the electronic absorption spectra of the sol has been attributed to the coagulation of colloidal silver particles in the sol. The long wavelength band is found to be red-shifted with the decrease in adsorbate concentration. The excitation profile study indicates that the resonance of the Raman excitation radiation with the original sol band is more important than that with the new aggregation band for the SERS activity. This indicates a large contribution of electromagnetic effect to surface enhancement.  相似文献   

19.
In this paper, the chemical enhancement of surface-enhanced resonance Raman scattering (SERRS) of pyrazine adsorbed on Ag nanoparticles through charge transfer was experimentally and theoretically investigated. Based on the calculations by density functional theory (DFT) and time-dependent DFT (TD-DFT), we theoretically analyzed the absorption spectra and SERS spectrum of the S-complex of pyrazine–Ag20. The charge transfer in the process of resonant electronic transitions between adsorbed molecule and metal cluster can be visualized by the method of charge difference density. It is a direct evidence for the chemical enhancement mechanism of SERRS of pyrazine molecule adsorbed on Ag nanoparticle via charge transfer between molecule and metal. Additionally, the intracluster charge redistribution was also considered as an evidence for the electromagnetic enhancement. By comparing the experimental and theoretical results, it was demonstrated that the SERRS of the pyrazine molecule absorbed on silver clusters in different incident wavelength regions is dominated by different enhancement mechanisms via the chemical and electromagnetic enhancements.  相似文献   

20.
Surface-enhanced resonance Raman scattering (SERRS) spectra of various rhodamine dyes, of pyronine G and thiopyronine adsorbed on isolated silver clusters were recorded at the ensemble level and at the single-molecule level with a high-resolution confocal laser microscope equipped with a spectrograph and a CCD-detector. Comparing single-molecule spectra with ensemble spectra, various inhomogeneous spectral features, such as line splitting, spectral wandering, spectral diffusion and abrupt spectral jumps between different metastable spectral states, are revealed positions and the relative intensities of the vibronic bands. Resonance enhancement is investigated with respect to single-molecule surface-enhanced Raman scattering (SERS) spectroscopy and is found to be responsible for approximately three orders of magnitude in sensitivity. A significant influence of the substituents on the single-molecule SERRS sensitivity is found, showing that various chemical effects are responsible for surface enhancement in addition to the electromagnetic enhancement effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号