首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Metal–organic frameworks (MOFs) are emerging porous coordination polymers constructed by metal ions and organic linkers that have attracted numerous interests in recent years. The large surface area, high porosity, tunable size, and versatile functionality make them promising materials for cargo delivery (i.e., drugs, mRNA, dyes) and sensing (i.e., nucleic acids, small molecules, ions). In addition, the metal ions released from MOFs offer antibacterial and antifungal utility. This review presents a snapshot of current MOF-related research, highlighting the synthesis approaches, and the various bioapplications of MOFs in terms of biosensing platforms, drug delivery, and antimicrobial agents, exposing potential for future research in the MOF field.  相似文献   

2.
3.
Metal–organic frameworks (MOFs) have been proven to be outstanding adsorbent materials which possess excellent pollutant removal performances in wastewater treatment. However, MOFs consumption, loss, or blockage in reactor pipelines as well as the long and complicated recycling process severely limit their practical applications. Therefore, construction of novel MOFs composites with extremely high ease-of-use property has become a research hotspot, such as two-dimensional (2D) MOFs fibrous membranes. In this review, the exploitation of MOFs nanofibrous membranes via electrospinning and their applications in wastewater treatment are summarized. The MOFs nanofibers (NFs) architectures are established systematically by five routes: (1) direct electrospinning of MOFs-polymer; (2) induced growth of MOFs on electrospun NFs containing seeds; (3) growth of MOFs on electrospun organic NFs’ (4) growth of MOFs on electrospun inorganic NFs; and (5) simultaneous electrospinning and electrospraying. Furthermore, the applications of different types of MOFs nanofibrous membranes and their derivatives in water treatment and purification are discussed, including oil-water separation, the removal of heavy metal ions, organic dyes, personal care products, non-steroidal anti-inflammatory drugs (NSAIDs) and so on. The adsorption properties and mechanisms of electrospun MOFs nanofibrous membranes towards various environmental pollutants are discussed. Finally, the challenges of electrospun MOFs NFs, the limitations of their applications, and future development trends are prospected.  相似文献   

4.
Coordination polymers were obtained by the reaction of metal acetates, M(CH3COO)2·xH2O {where M = Mn(II), Co(II), Ni(II) and Cu(II)} with AFP ligand (AFP = 5,5'-(piperazine-1,4-diylbis(methylene))bis(2-aminobenzoic acid). The AFP ligand was prepared by the one-pot, two-step reaction of formaldehyde, 2-aminobenzoic acid, and piperazine. Structural and spectroscopic properties have been studied by elemental, spectral (FT-IR, 1H NMR, 13C NMR, and UV–vis), and thermogravimetric analysis. UV–vis spectra and magnetic moment values indicate that Mn(II), Co(II), and Ni(II) polymer–metal complexes are octahedral, while Cu(II) and Zn(II) polymer–metal complexes are distorted octahedral and tetrahedral, respectively. The analytical data confirmed that the coordination polymers of Mn(II), Co(II), Ni(II), and Cu(II) are coordinated with two water molecules, which are further supported by infrared spectra and thermogravimetric analysis data. The prepared polymer–metal complexes showed good antibacterial activities against all tested microorganisms; however, the AFP ligand was also found to be effective, but relatively less than their polymer–metal complexes. Along with antibacterial activity, all the polymer–metal complexes exhibit significant antifungal activity against most of the tested fungal strains. The results of antimicrobial activity reveals that the AFP–Cu(II) showed the highest antibacterial and antifungal activity than other polymer–metal complexes.  相似文献   

5.
Carbohydrate recognition is clearly present throughout nature, playing a major role in the initial attachment of one biological entity to another. The important question is whether these prevalent interactions could provide a real suitable alternative to the use of antibodies or nucleic acid for detection and identification. Currently, examples of carbohydrates being employed in biological detection systems are limited. The challenges of using carbohydrate recognition for detection mainly come from the weak affinity of carbohydrate–protein interactions, the lack of versatile carbohydrate scaffolds with well-defined structures, and the less developed high-information-content, real-time, and label-free assay technology. In this review, we focus on discussing the characteristics of carbohydrate–protein interactions in nature and the methods for carbohydrate immobilization based on surface coupling chemistry in terms of their general applicability for developing carbohydrate- and lectin-based label-free sensors. Furthermore, examples of innovative design of multivalent carbohydrate–protein interactions for sensor applications are given. We limit our review to show the feasibility of carbohydrate and lectin as recognition elements for label-free sensor development in several representative cases to formulate a flexible platform for their use as recognition elements for real-world biosensor applications.  相似文献   

6.
Lithium-ion batteries(LIBs) have become one of the most successful energy storage systems due to their high operating voltage,high energy density, and long cycle life. However, with the widespread use of LIBs in recent decades, lithium resources are at risk of being exhausted. Therefore, it is necessary to find a substitute for LIBs to meet the needs of future large-scale energy storage systems. Because of their competitiveness, low cost, and high safety, aqueous rechargeable zinc-ion batteries(...  相似文献   

7.
In this work, gold nanoparticles (AuNPs) assembled on the surface of iron based metal–organic frameworks (MOFs), Fe-MIL-88, are facilely prepared through electrostatic interactions using polyethyleneimine (PEI) molecules as linker. The resulting hybrid materials possess synergetic peroxidase-like activity. Because iron based metal–organic frameworks, Fe-MIL-88, exhibits highly peroxidase-like activity, and AuNPs has the distinct adsorption property to single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). The peroxidase-like activity of Au@Fe-MIL-88 exhibit excellent switchable in response to specific DNA, ssDNA is easily adsorbed on the surface of the Au@Fe-MIL-88 hybrids, resulting in the reduce of the peroxidase-like activity of the hybrids. While it is recovered by the addition of target DNA, and the recovery degree is proportional to the target DNA concentration over the range of 30–150 nM with a detection limit of 11.4 nM. Based on these unique properties, we develop a label-free colorimetric method for DNA hybridization detection. In control experiment, base-mismatched DNA cannot induce recovery of the peroxidase-like activity. This detection method is simple, cheap, rapid and colorimetric.  相似文献   

8.
A fluorescence sensing platform based on metal–organic frameworks (MOFs) nanoparticles (NPs) of both zeolitic imidazolate framework-7 (ZIF-7) and zeolitic imidazolate framework-60 (ZIF-60) was developed for speciation analysis of inorganic Hg [Hg(II)] and methylmercury (MeHg+). Microwave-ultrasound assisted synthesis was employed for the preparation of ZIF-7 and ZIF-60 NPs, with short reaction time, easy procedure, and small particle size obtained. Based on strict cavity confinement of the ZIF-7 and ZIF-60 structures, the proposed method exhibited excellent selectivity for both Hg(II) and MeHg+, even in the presence of the other Hg species or various cations or anions with the concentration of 50 times high. Effect of pH and ionic strength on sensing behaviour of the ZIF MOF was studied as well. The calculated detection limit is 3 ng mL−1 and 6 ng mL−1 for Hg(II) and MeHg+, respectively. Furthermore, the application of the developed method to the analysis of local drinking water was demonstrated to be feasible, and the obtained recovery was 102% and 96.2% for Hg(II) and MeHg+, respectively.  相似文献   

9.
10.
11.
Journal of Radioanalytical and Nuclear Chemistry - A customized single-stage cylindrical combined air lift mixer-settler (C-CALMIX) device has been developed and its performance was evaluated by...  相似文献   

12.
Metal–organic frameworks(MOFs) are a fascinating class of crystalline materials constructed from selfassembly of metal cations/clusters and organic ligands. Both metal and organic components can be used to generate luminescence, and can further interact via antenna effect to increase the quantum yield,providing a versatile platform for chemical sensing based on luminescence emission. Moreover, MOFs can be miniaturized to nanometer scale to form nano-MOF(NMOF) materials, which exhibit many advantages over conventional bulk MOFs in terms of the facile tailorability of compositions, sizes and morphologies, the high dispersity in a wide variety of medium, and the intrinsic biocompatibility. This review will detail the development of NMOF materials as chemical sensors, including the synthetic methodologies for designing NMOF sensory materials, their luminescent properties and potential sensing applications.  相似文献   

13.
In this study, metal organic framework (MOF)–organic polymer monoliths prepared via a 5-min microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the addition of various weight percentages (30–60%) of porous MOF (MIL-101(Cr)) were developed as stationary phases for capillary electrochromatography (CEC) and nano-liquid chromatography (nano-LC). Powder X-ray diffraction (PXRD) patterns and nitrogen adsorption/desorption isotherms of these MOF–organic polymer monoliths showed the presence of the inherent characteristic peaks and the nano-sized pores of MIL-101(Cr), which confirmed an unaltered crystalline MIL-101(Cr) skeleton after synthesis; while energy dispersive spectrometer (EDS) and micro-FT-IR spectra suggested homogenous distribution of MIL-101(Cr) in the MIL-101(Cr)–poly(BMA–EDMA) monoliths. This hybrid MOF–polymer column demonstrated high permeability, with almost 800-fold increase compared to MOF packed column, and efficient separation of various analytes (xylene, chlorotoluene, cymene, aromatic acids, polycyclic aromatic hydrocarbons and trypsin digested BSA peptides) either in CEC or nano-LC. This work demonstrated high potentials for MOF–organic polymer monolith as stationary phase in miniaturized chromatography for the first time.  相似文献   

14.
Journal of Radioanalytical and Nuclear Chemistry - A new MOFs-based adsorbent UiO-66@iPCC5 was prepared by hybridization of 25,27-bis(iso-propoxyl)-calix[4]arene-26,28-crown-5 (iPCC5) into the...  相似文献   

15.
Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding.  相似文献   

16.
Coordination polymers [Na(Hidc)(H2idc)(H2O)2] (1) and [Na(Hidc)(H2O)] (2) (H2idc?=?imidazole-4,5-dicarboxylic acid) have been synthesized hydrothermally and analyzed by single-crystal X-ray diffraction analysis, TGA, and IR. Compound 1 displays a 1-D coordination network and 2 exhibits a layered coordination structure. Both compounds form 3-D frameworks through hydrogen bonds.  相似文献   

17.
Hydrothermal reactions of alkaline earth metal nitrates with two ditopic carboxylic acids, trans-1,4-cyclohexanedicarboxylic acid (H2CDC) and 1,4-phenylenedipropionic acid (H2PDP), generate two 3-D metal–organic frameworks (MOFs) with empirical formulas [Ca(CDC)(H2O)2]·H2O (1) and [Sr(PDP)(H2O)] (2), respectively. Compound 1 consists of Ca–COO–H2O chains cross-linked through the –C6H10– spacers of the CDC anions, showing slightly open 1-D channels along the crystallographic c axis that accommodate the guest water molecules. Compound 2 exhibits a MOF consisting of wavy 2-D Sr–COO–H2O nets linked by –CH2CH2C6H4CH2CH2– tethers, and the condensed structure appears to arise from conformational flexibility of the ligand spacer.  相似文献   

18.
This review outlines three types of in situ methods used for constructing metal–organic sulfur-containing heterocycle frameworks, viz., in situ S–S function reactions, in situ C–S bond cleavage and in situ thiol-S atom reactions. Each method is described in detail in three respects, namely (i) reaction parameters, (ii) the organic transformation and coordination modes involved, and (iii) fascinating structures and functional properties of those in situ-generated metal-coordination compounds.  相似文献   

19.
The controlled preparation of two-dimensional (2D) nanosheets of metal–organic frameworks (MOFs), with tailorable methodologies, properties, and applications, is of significant importance. Here, in this work, by subtle control of the ultrasonic duration and solvent polarity, the iron(II)-based 2D MOF Fe(pyz)2Cl2 (pyz = pyrazine) has been elegantly tailored into 2D nanosheets (lateral size ≥500 nm in aqueous, with ultrasonic duration of 30 min) and one-dimensional (1D) nanoribbons (lateral size ≤100 nm in ethanol solution, with ultrasonic duration of 90 min). The aqueous suspension of 2D nanosheets was featured with thermal-induced spin-state transition at around room temperature and can be used as effective Fenton catalysts for degradation of water-soluble organic dyes, whereas the ethanol suspension of 1D nanoribbons can act as a versatile nanoplatform for trans-to-cis isomerization of 4, 4′-azopyridine. These results may provide a novel strategy for the controlled preparation of layered nanomaterials.  相似文献   

20.
Organic/inorganic hybrid materials prepared by the sol–gel approach have rapidly become a fascinating new field of research in materials science. The explosion of activity in this area in the past decade has made tremendous progress in both the fundamental understanding of the sol–gel process and the development and applications of new organic/inorganic hybrid materials. Polymer-inorganic nanocomposite present an interesting approach to improve the separation properties of polymer material because they possess properties of both organic and inorganic such as good permeability, selectivity, mechanical strength, and thermal and chemical stability. Composite material derived by combining the sol–gel approach and organic polymers synthesis of hybrid material were the focus area of review It has also been demonstrated in this review that a more complete understanding of their structure–property behavior can be gained by employing many of the standard tools that are utilized for developing similar structure–property relationships of organic polymers. This review article is introductory in nature and gives introduction to composite materials/nanocomposite, their applications and the methods commonly employed for their synthesis and characterization. A brief literature survey on the polysaccharide templated and polysaccharide/protein dual templated synthesis of silica composite materials is also presented in this review article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号