首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a sensitive optical waveguide (OWG) sensor for the detection and identification of volatile organic compounds (VOCs) was reported. The sensing membrane is constructed by immobilization of peroxopolytungsten acid (PTA) thin film over a single-mode potassium ion (K+) exchanged glass OWG by spin-coating method. A laser beam was coupled into and out of the glass optical waveguide using prism couplers, and dry air functioned as a carrier gas. The sensor was tested for various volatile organic compounds (VOCs), and it showed higher response to the chlorobenzene gas compared to other VOCs. Therefore, we used the OWG sensor to detect chlorobenzene gas as a typical example of VOCs. The sensor exhibits a linear response to chlorobenzene gas in the range of 0.4-1000 ppm with rapid response and good reversibility. The constructed sensor is easy to fabricate and it has some unique qualities which can be characterized as inexpensive, sensitive, and reusable.  相似文献   

2.
Micromachining technology is coupled to a selective pre-concentration material for the development of a portable sub-ppb level monitoring system for aromatic volatile organic compounds (VOC); the high sensitivity of Metal Oxide (MOX) gas sensors is combined with a supramolecular concentration unit to increase selectivity and reduce the detection limits.  相似文献   

3.
《中国化学快报》2020,31(8):2055-2058
Tin dioxide is important gas sensor material and has wide applications in the detection of toxic gases and volatile organic compounds. Here, we synthesized a 3D laminated structural CuO/SnO2 material possessing p-n heterostructures. The morphology and structure were characterized by XRD, SEM, TEM and XPS techniques and the sensing properties were investigated for the detection of triethylamine (TEA). The results indicate that 3D laminated CuO/SnO2 material, assembled by lamellae consisting of ordered nanoparticles, exhibit an enhanced sensing performance compared with SnO2, and notably, CuO/SnO2 with size less than 1 μm has obvious high selectivity in the detection of 100 ppm TEA. Particularly, it has a high response and stability to 1 and 5 ppm TEA (S is 8 and 33), and that is higher than SnO2 material, suggesting 3D laminated CuO/SnO2 is an effective candidate material served as sensor platform to detect low-concentration amines.  相似文献   

4.
Titanate sol–gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.  相似文献   

5.
The focus of this work was to detect formaldehyde (HCHO) as a very volatile compound (VVOC) among other volatile organic compounds in the low concentration ranges that are relevant for the production control in wood processing industries. We show that a quick and easy derivatization of HCHO can be used for a reliable and straightforward identification with GC-FAIMS. Headspace samples of specimens made from wood-based panels were collected and pre-concentrated on a conventional solid phase microextraction fiber (SPME) and thermally desorbed in a split/splitless GC-injector. A standard gas-mixer generator based on the dynamical permeation principle was used to produce known concentrations of HCHO. The results are compared with gas chromatography??mass spectrometry (GC-MS).  相似文献   

6.
Continuous surveillance of composting processes would enable a feedback loop to be obtained for both analysis and process control. For this purpose, we designed e-noses based on a six-electrode quartz-crystal microbalance (QCM) array coated with affinity materials and molecularly imprinted polymers (MIP). They enable quantitative monitoring of volatile organic compounds (VOCs) emitted directly in a compost bin and are highly suitable tools for achieving on-line characterization of the degradation processes occurring. During grass and pine composting (duration 14 days and 40 days, respectively), we observed concentrations of up to 250 ppm of esters, 700 ppm of alcohols, 250 ppm of terpenes, and 90% relative humidity directly on-line with such a system and could validate the data off-line by GC-MS. The sensor also gave direct insight into the differences between the two composting batch types. Besides duration, during grass composting larger amounts of alcohols are emitted whereas relative amount of terpenes is twice as high for pine composting. Detailed correlation of the sensor and the GC-MS data allows approximate estimation of the sensitivity of the sensor materials towards analyte classes such as, e.g., aliphatic alcohols or terpenes. Figure Mass sensitive sensor arrays coated with different molecularly imprinted and affinity materials are a highly suitable tool for quantitatively monitoring solvent patterns during composting procedures on-line in a composter headspace. Dedicated to Professor Udo Brinker on the occasion of his 65th birthday.  相似文献   

7.
《印度化学会志》2022,99(11):100754
Naked-eye colored chemo dosimeter based on vanilline based conjugated sensor was synthesized and characterized. The main point of this paper is that the solvent also affects on selectivity of metals. Vanilline based conjugate sensor exhibited high selectivity and sensitivity for detection of Ferric ions (Fe+3) in all (both polar and nonpolar) solvents according to absorbance which can be observed by naked eye. The selectivity was more prominent in nonpolar or less polar solvent due to solubility factor of ions and sensor but not for polar. The detection of limit of the synthesized probes was shown up to 0.84 ppm. The dielectric constant of solvents affected on the complex formation of ligand with transition metal ions. A filter paper strip system was used for rapid monitoring of detection by color variation.  相似文献   

8.
A new piezoelectric quartz crystal (PQC) sorption detector was developed to monitor carbon monoxide (CO) at sub-ppm level in ambient air. Out of the 28 coating materials studied, the palladium(II) acetamide complex with a 1:10 mole ratio of Pd(II) to acetamide was found to be the best. The detection is based on a non-reversible gas/coating interaction with sensitivity depending on gas flowrate. For 5-15 min exposure at a flowrate of 50 ml/min, the working ranges were found to vary from 0.7 to 40 ppm (total exposure from 8 to 160 μg CO) and detection limits (S/N=2) from 0.7 to 2 ppm CO (total exposure to 8 μg CO). The repeatability at 10 ppm CO was 11.8% (R.S.D. for n=3). The sensor lifetime was found dependent on exposure up to 160 μg CO or not exceeding 1000 Hz accumulative shift of frequency to avoid saturation of active sites at the crystal surface. No interference to CO detection was found for H2, H2S, SO2, NO2, CO2, HCHO, gasoline and water vapors at concentrations much higher than ambient air. Compared to existing CO monitor, the PQC detector developed has advantages of adequate selectivity, high sensitivity, fast response and a much lower detection limit for detecting CO at sub-ppm levels. However, it is limited by the total exposure to a maximum of 160 μg CO that restricts its application to intermittent monitoring of low CO concentration. The present work has demonstrated the advantages of using strong non-reversible interaction to enhance PQC sensitivity, as the total exposure can be adjusted easily by a suitable control of the gas flowrate.  相似文献   

9.
Owing to their high surface area, stable structure and easy fabrication, composite nanomaterials with encapsulation structures have attracted considerable research interest as sensing materials to detect volatile organic compounds. Herein, a hydrothermal route is designed to prepare foam shaped α-MoO3@SnS2 nanosheets that exhibit excellent sensing performance for triethylamine(TEA). The developed sensor,based on α-MoO3@SnS2 nanosheets, displays a high ...  相似文献   

10.
The application of metal–organic frameworks (MOFs) as SERS-active platforms in multiplex volatile organic compounds (VOCs) detection is still unexplored. Herein, we demonstrate that MIL-100 (Fe) serves as an ideal SERS substrate for the detection of VOCs. The limit of detection (LOD) of MIL-100(Fe) for toluene sensing can reach 2.5 ppm, and can be even further decreased to 0.48 ppb level when “hot spots” in between Au nanoparticles are employed onto MIL-100 (Fe) substrate, resulting in an enhancement factor of 1010. Additionally, we show that MIL-100(Fe) substrate has a unique “sensor array” property allowing multiplex VOCs detection, with great modifiability and expandability by doping with foreign metal elements. Finally, the MIL-100(Fe) platform is utilized to simultaneously detect the different gaseous indicators of lung cancer with a ppm detection limit, demonstrating its high potential for early diagnosis of lung cancer in vivo.  相似文献   

11.
The frequency response characteristics for twenty-two organic vapours by piezoelectric thickness-shear-mode (TSM) acoustic wave sensors coated with four supramolecule compounds—calixarenes have been investigated. Among them, 2,8,14,20-tetraethyl-4,6,10,12,16,18,22,24-octahydroxylcalix[4]arene (I) was the most efficient actively adsorptive material for host-guest recognizing alkyl ketone molecules such as 2-butanone and acetone. The supramolecule recognition mechanism has been discussed, that is based on the formation of C-H?π bond interaction between the methyl group of ketone molecule and the phenyl ring of the calixarene compound. The linear range of the TSM sensor upon exposure to 2-butanone vapour was 0-940.5 ppm with a detection limit of 2.67 ppm when the coating mass of the compound I was selected as 19 μg. The kinetics behaviours in the adsorption and desorption processes have been examined with polynomial curve fitting procedure. Furthermore, the proposed TSM sensor possessed good selectivity, reversibility, reproducibility and high stability. Compared with gas chromatography (GC) method, the proposed sensor can be used for on-line determination of 2-butanone vapour in air with a recovery of 94.8-106.5%, which was in consistent with those obtained by GC method.  相似文献   

12.
A novel gas sensor for the determination of ethanol was proposed in the present work, which was based on the generated cataluminescence emission from catalytic oxidation of ethanol on the surface of ZnO nanoparticles. The cataluminescence characteristics and the effect of different parameters on the signal intensity, such as morphology of synthesized ZnO, temperature and flow rate, were discussed in detail. Under the optimized experimental conditions, the calibration curve of cataluminescence intensity versus ethanol vapor concentration was linear in the range 1.0-100 ppm, and with a detection limit of 0.7 ppm (S/N = 3). Compared with the traditional electrical conductivity-based ZnO gas sensor for the determination of ethanol, the proposed ethanol sensor showed the advantages of high sensitivity, high selectivity and low working temperature.  相似文献   

13.
Breath analysis constitutes a promising tool in clinical and analytical fields due to its high potential for non-invasive diagnostics of metabolic disorders and monitoring of disease status. An optical fiber (OF) sensor has been developed for determination of volatile organic compounds (ethane, pentane, heptane, octane, decane, benzene, toluene and styrene) in human breath for clinical diagnosis.The analytical system developed showed a high performance for breath analysis, inferred for the analytical signal intensity and stability, linear range, and detection limits ranging from 0.8 pmol L−1, for heptane, and to 9.5 pmol L−1, for decane. The OF sensor also showed advantageous features of near real-time response and low instrumentation costs, besides showing an analytical performance equivalent to the breath analysis by gas chromatography-mass spectrometry (GC-MS), used as the reference method.  相似文献   

14.
An electrochemical sensor was prepared using Au nanoparticles and reduced graphene successfully decorated on the glassy carbon electrode (Au/RGO/GCE) through an electrochemical method which was applied to detect Sunset Yellow (SY). The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical measurements. The results of cyclic voltammetry (CV) proved that Au/RGO/GCE had the highest catalytic activity for the oxidation of SY as compared with GCE, Au/GCE, and RGO/GCE. Differential pulse voltammetry (DPV) showed that the linear calibration curves for SY on Au/RGO/GCE in the range of 0.002 μM–109.14 μM, and the detection limit was estimated to be 2 nM (S/N = 3). These results suggested that the obtained Au/RGO/GCE was applied to detect SY with high sensitivity, low detection limit and good stability, which provided a promising future for the development of portable sensor in food additives.  相似文献   

15.
《中国化学快报》2020,31(8):2033-2036
Noble metal is usually used to improve the gas sensing performance of metal oxide semiconductor (MOS) due to its better catalytic properties. In this work, we reported a synthesis of Pd/ZnO nanocomposite by an in situ reduction with ascorbic acid (AA). It was found that Pd/ZnO sensor has excellent selectivity to CO and the response of the Pd/ZnO sensor towards 100 ppm CO was as high as 15 (Ra/Rg), obviously higher than that of the pristine ZnO sensor (1.4) when the working temperature is 220 °C. Moreover, the pure ZnO sensor almost has no selectivity to CO, but the Pd/ZnO sensor has excellent selectivity to CO, which may be ascribed to the electronic sensitization of Pd. Our present results demonstrate that the Pd can significantly improve the gas-sensing performance of metal oxide semiconductor and the obtained sensor has great potential in monitoring coal mine gas.  相似文献   

16.
Y Komazaki  Y Narita  S Tanaka 《The Analyst》1998,123(11):2343-2349
An automated measurement system for monitoring formaldehyde (HCHO) and acetaldehyde (CH3CHO) in automotive exhaust gas by using a diffusion scrubber in combination with high-performance liquid chromatography (HPLC) was developed. HCHO and CH3CHO are effectively collected by the diffusion scrubber, which consists of a hydrophobic porous PTFE tube disposed concentrically within a Pyrex-glass tube and a scrubbing solution. 2,4-Dinitrophenylhydrazine is used as the scrubbing solution for trapping HCHO and CH3CHO, which are derivatized to formaldehyde 2,4-dinitrophenylhydrazone (DNPH-HCHO) and acetaldehyde 2,4-dinitrophenylhydrazone (DNPH-CH3CHO), respectively, with phosphoric acid as an acid catalyst. After the collection of the gas sample, the sample solution in the diffusion scrubber is injected into the HPLC system and DNPH-HCHO and DNPH-CH3CHO are separated and determined. All measurement operations are sequenced by a programmable controller and an automated continuous measurement can be performed at 10 min intervals. The collection efficiencies of HCHO and CH3CHO were higher than 97% at a gas flow rate of 0.21 min-1. The detection limit (3 sigma of the blank value) was 0.001 ppm v/v for HCHO and CH3CHO for a 1.61 gas sample volume. No interference of co-existing nitrogen dioxide (NO2) in the collection of HCHO and CH3CHO was observed. The average concentration of HCHO in the exhaust gas from methanol-fueled vehicles was 77.3 ppm v/v (n = 5) in the cold-phase mode when engines were first started. In the hot-phase mode, the average concentration of HCHO was 3.3 ppm v/v (n = 15). The concentrations of HCHO measured by this automated measurement system were in good agreement with those obtained using the impinger-HPLC method.  相似文献   

17.
Hobson ST  Cemalovic S  Patel SV 《The Analyst》2012,137(5):1284-1289
Remote and automated detection of organic compounds in subsurface aquifers is crucial to superfund monitoring and environmental remediation. Current monitoring techniques use expensive laboratory instruments and trained personnel. The use of a filled tubular preconcentrator combined with a chemicapacitive detector array presents an attractive option for the unattended monitoring of these compounds. Five preconcentrator materials were exposed to common target compounds of subsurface remediation projects (1,1,2-trichloroethane, trichloroethylene, t-1,2-dichloroethylene, benzene, and perchloroethylene). Rapid heating of the tube caused the collected, concentrated effluent to pass over the surface of a chemicapacitive detector array coated with four different sorbent polymers. A system containing a porous ladder polymer and the sensor array was subsequently used to sample the analytes injected onto sand in a laboratory test, simulating a subsurface environment. With extended collection times, effective detection limits of 5 ± 3 ppbV for 1,1,2-trichloroethane and 145 ± 60 ppbV for benzene were achieved. Effects of the preconcentrator material structure, the collection time, and sensor material on the system performance were observed. The resultant system presents a solution for remote, periodic monitoring of chlorinated organic compounds and other volatile organic compounds in a soil matrix.  相似文献   

18.
The synergy of combining fast temperature programming capability and adsorption chromatography using fused silica based porous layer open tubular columns to achieve high throughput chromatography for the separation of volatile compounds is presented. A gas chromatograph with built‐in fast temperature programming capability and having a fast cool down rate was used as a platform. When these performance features were combined with the high degree of selectivity and strong retention characteristic of porous layer open tubular column technology, volatile compounds such as light hydrocarbons of up to C7, primary alcohols, and mercaptans can be well separated and analyzed in a matter of minutes. This analytical approach substantially improves sample throughput by at least a factor of ten times when compared to published methodologies. In addition, the use of porous layer open tubular columns advantageously eliminates the need for costly and time‐consuming cryogenic gas chromatography required for the separation of highly volatile compounds by partition chromatography with wall coated open tubular column technology. Relative standard deviations of retention time for model compounds such as alkanes from methane to hexane were found to be less than 0.3% (n = 10) and less than 0.5% for area counts for the compounds tested at two levels of concentration by manual injection, namely, 10 and 1000 ppm v/v (n = 10). Difficult separations were accomplished in one single analysis in less than 2 min such as the characterization of 17 components in cracked gas containing alkanes, alkenes, dienes, branched hydrocarbons, and cyclic hydrocarbons.  相似文献   

19.
《中国化学快报》2020,31(8):2063-2066
Graphene quantum dots (GQDs) have both the properties of graphene and semiconductor quantum dots, and exhibit stronger quantum confinement effect and boundary effect than graphene. In addition, the band gap of GQDs will transform to non-zero from 0 eV of graphene by surface functionalization, which can be dispersed in common solvents and compounded with solid materials. In this work, the SnO2 nanosheets were prepared by hydrothermal method. As the sensitizer, nitrogen-doped graphene quantum dots (N-GQDs) were prepared and composited with SnO2 nanosheets. Sensing performance of pristine SnO2 and N-GQDs/SnO2 were investigated with HCHO as the target gas. The response (Ra/Rg) of 0.1% N-GQDs/SnO2 was 256 for 100 ppm HCHO at 60 °C, which was about 2.2 times higher than pristine SnO2 nanosheet. In addition, the material also had excellent selectivity and low operation temperature. The high sensitivity of N-GQDs/SnO2 was attributed to the increase of active sites on materials surface and the electrical regulation of N-GQDs. This research is helpful to develop new HCHO gas sensor and expand the application field of GQDs.  相似文献   

20.
The decomposition of chlorinated volatile organic compounds by non-thermal plasma generated in a dielectric barrier discharge was investigated. As model compounds trichloroethylene (TCE) and 1,2-dichloroethane (DCE) were chosen. It was found that TCE removal exceeds 95% for input energy densities above 0.2 eV/molecule, regardless of the initial concentration of TCE, in the range 100–750 ppm. On the other hand, DCE was more difficult to decompose, the removal rate reached a maximum of 60% at the highest input energy used. For both investigated compounds the selectivity towards carbon dioxide was significantly influenced by their initial concentration, increasing when low concentrations were used. The gas flow rate had also an effect on CO2 selectivity, which is higher at low flow rate, due to the higher residence time of the gas in the plasma. The best values obtained in these experiments were around 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号