首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用CCSD/6-311++G(d,p)//B3LYP/6-311++G(d,p)方法研究了HCHO与卤素原子X(X=F、Cl、Br)的反应机理. 计算结果表明, 卤素原子X(X=F、Cl、Br)主要通过直接提取HCHO中的H原子生成HCO+HX(X=F、Cl、Br). 另外还可以生成稳定的中间体, 中间体再通过卤原子夺氢和氢原子直接解离两个反应通道分别生成HCO+HX(X=F、Cl、Br)和H+XCHO(X=F、Cl、Br). 其中卤原子夺氢通道为主反应通道, HCO和HX(X=F、Cl、Br)为主要的反应产物; 且三个反应的活化能均较低, 说明此类反应很容易进行, 计算结果与实验结果符合很好. 电子密度拓扑分析显示, 在HCHO+X反应通道(b)中出现了T型结构过渡态, 结构过渡态(STS)位于能量过渡态(ETS)之后. 并且按F、Cl、Br的顺序, 结构过渡态出现得越来越晚.  相似文献   

2.
盖景刚  任译 《有机化学》2004,24(10):1267-1270
在B3LYP/6-311 G(2df,p)的水平上,对反应X- CH3SCl(X=F,Cl,Br,I)进行了理论研究.计算结果表明:X-(X=Cl,Br,I)与CH3SCl作用时,实际发生的是在硫原子上而不是在碳原子上的亲核取代反应,而且属于加成-消去机理.但是F-与CH3SCl作用则容易发生脱质子反应.  相似文献   

3.
The electronic structure and thermochemical stability of the HOX-SO(3) (X = F, Cl, Br) complexes is studied using second-order M?ller-Plesset perturbation theory (MP2). The calculated dissociation energies of the HOF-SO(3), HOCl-SO(3), and HOBr-SO(3) complexes are 5.43, 6.02, and 5.98 kcal mol(-1) at MP2/6-311++G(3df,3pd) level, respectively. Anharmonic OH stretching frequencies of the HOX (X = F, Cl, Br) moieties along with the frequency shifts upon complex formation are calculated at the MP2/6-311++G(2df,2p) level. AIM and NBO analyses were also performed. Theoretical data strongly encourage performing of matrix-isolation studies of the title complexes and their spectroscopic identification.  相似文献   

4.
由于在有机合成化学、生命科学、大气化学和环境保护中的重要性,含有S=S键的过硫化物(硫烷)XSSX(X=H,CH3,F,Cl等)得到广泛研究。过硫化物XSSX可以有如图1所示的2种异构体,一种是与过氧化氢结构类似的非平面型的线型结构(属于C2点群),另一种是硫代亚砜型的分叉型构型(SSX2,属于C  相似文献   

5.
H-bonding angle angleYHX has an important effect on the electronic properties of the H-bond Y...HX, such as intra- and intermolecular hyperconjugations and rehybridization, and topological properties of electron density. We studied the multifurcated bent H-bonds of the proton donors H3CZ (Z = F, Cl, Br), H2CO and H2CF2 with the proton acceptors Cl(-) and Br(-) at the four high levels of theory: MP2/6-311++G(d,p), MP2/6-311++G(2df,2p), MP2/6-311++G(3df,3pd) and QCISD/6-311++G(d,p), and found that they are all blue-shifted. These complexes have large interaction energies, 7-12 kcal mol(-1), and large blue shifts, delta r(HC) = -0.0025 --0.006 A and delta v(HC) = 30-90 cm(-1). The natural bond orbital analysis shows that the blue shifts of these H-bonds Y...HnCZ are mainly caused by three factors: rehybridization; indirect intermolecular hyperconjugation n(Y) -->sigma*(CZ), in that the electron density from n(Y) of the proton acceptor is transferred not to sigma*(CH), but to sigma*(CZ) of the donor; intramolecular hyperconjugation n(Z) -->sigma*(CH), in that the electron density in sigma*(CH) comes back to n(Z) of the donor such that the occupancy in sigma*(CH) decreases. The topological properties of the electron density of the bifurcated H-bonds Y...H2CZ are similar to those of the usual linear H-bonds, there is a bond critical point between Y and each hydrogen, and a ring critical point inside the tetragon YHCH. However, the topological properties of electron density of the trifurcated H-bonds Y...H3CZ are essentially different from those of linear H-bonds, in that the intermolecular bond critical point, which represents a closed-shell interaction, is not between Y and hydrogen, but between Y and carbon.  相似文献   

6.
李晓艳  孟令鹏  曾艳丽  郑世钧 《化学学报》2009,67(18):2102-2108
利用MP2/6-311++G(d,p)//B3LYP/6-311++G(d,p)对CH3SS与XO (X=F, Cl, Br)的反应机理进行了研究. 着重从电子密度拓扑分析角度讨论了化学键的生成和断裂. 计算结果表明单线态反应为主要反应通道, 且由于该通道的反应能垒低、放热明显, 说明CH3SS与XO在大气中比较容易进行. 电子密度拓扑分析表明, 在单线态抽氢反应通道中存在着四元环状过渡结构, 随着反应进行, 此四元环状过渡结构通过一个T-型结构变为三元环状过渡结构, 最后环状结构消失得到产物.  相似文献   

7.
The gauche and trans rotamers of halogeno(halogenomethyl)silane (XSiH2CH2X; X = F, Cl, Br, I), fluoro(halogenomethyl)silane and halogeno(fluoromethyl)silane (SiH2F–CH2Y and SiH2Y–CH2F; Y = Cl, Br, I) have been studied in the gas phase using theoretical methods. The transition state arising from gauche-trans isomerization has also been modeled. The methods used are density functional theory (DFT) and second-order M?ller–Plesset theory (MP2). B3LYP is the functional used for the DFT method. The basis set used is 6-311++G(d,p) for all atoms except that 6-311G(d,p) is used for the iodine atom only. The results indicate that the trans conformers are preferred in the gas phase and both energy difference and rotational barrier height increase as the size of the halogen increases. This study has been extended to include the solvent effect with the dielectric constant of the solvents varying from 2 to 80. The solvent effect was explored using Self-Consistent Reaction Field and the conformers have been fully optimized at the DFT/B3LYP level of theory. The net effect of a solvent is that energy difference decreases but the rotational barrier is not much affected. The findings from this work are explained in terms of different interactions and these are supported by a Natural Bond Orbital analysis.  相似文献   

8.
The gas-phase non-identity S(N)2 reactions on nitrogen Y(-) + NMe(2)X --> NMe(2)Y + X(-) (Y, X = F, Cl, Br, and I) were evaluated at the G2(+) level. The reactions are exothermic only when the nucleophile is the lighter halide. The complexation enthalpies for complexes Y(-) em leader Me(2)NX are found to correlate with electronegativity of X. Both central and overall barriers can be interpreted with the aid of Marcus equation. Kinetic and thermodynamic investigations predict that the nucleophilicity of X(-) decreases in the order: F(-) > Cl(-) > Br(-) > I(-) and the leaving-group ability increases in the order: F < Cl < Br < I.  相似文献   

9.
Density functional theory computations and pulsed-ionization high-pressure mass spectrometry experiments have been used to explore the potential energy surfaces for gas-phase S(N)2 reactions between halide ions and trifluoromethyl halides, X(-) + CF(3)Y --> Y(-) + CF(3)X. Structures of neutrals, ion-molecule complexes, and transition states show the possibility of two mechanisms: back- and front-side attack. From pulsed-ionization high-pressure mass spectrometry, enthalpy and entropy changes for the equilibrium clustering reactions for the formation of Cl(-)(BrCF(3)) (-16.5 +/- 0.2 kcal mol(-1) and -24.5 +/- 1 cal mol(-1) K(-1)), Cl(-)(ICF(3)) (-23.6 +/- 0.2 kcal mol(-1)), and Br(-)(BrCF(3)) (-13.9 +/- 0.2 kcal mol(-1) and -22.2 +/- 1 cal mol(-1) K(-1)) have been determined. These are in good to excellent agreement with computations at the B3LYP/6-311+G(3df)//B3LYP/6-311+G(d) level of theory. It is shown that complex formation takes place by a front-side attack complex, while the lowest energy S(N)2 reaction proceeds through a back-side attack transition state. This latter mechanism involves a potential energy profile which closely resembles a condensed phase S(N)2 reaction energy profile. It is also shown that the Cl(-) + CF(3)Br --> Br(-) + CF(3)Cl S(N)2 reaction can be interpreted using Marcus theory, in which case the reaction is described as being initiated by electron transfer. A potential energy surface at the B3LYP/6-311+G(d) level of theory confirms that the F(-) + CF(3)Br --> Br(-) + CF(4) S(N)2 reaction proceeds through a Walden inversion transition state.  相似文献   

10.
The reaction of N(4S)+CH3X(X=Cl、Br) was studied by the ab initio method. The geometries of the reactants, transition states and products were optimized at the MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the MP2/6-311++G(3df,2p) and the QCISD(T)/6-311+G(d,p) levels using the MP2/6-311+G(d,p) optimized geometries. The energies of all the stationary points were calculated by the G2MP2 method. The results of this theoretical study indicate that the reaction has three reaction channels: H abstraction reaction channel a, Cl or Br abstraction reaction channel b and substitution reaction channel c. For the N(4S)+CH3Cl reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have a slight contribution in the reaction. For the N(4S)+CH3Br reaction, reaction channel a is the main reaction channel. Reaction channels b and c may have some contribution in the reaction.  相似文献   

11.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
Complexes of superalkali Li3S and XCCH (X = F, Cl, Br, and I) have been studied with theoretical calculations at the MP2/aug‐cc‐pVTZ level. Three types of structures are found: (A) the X atom combines with the S atom through a halogen bond; (B) the X atom interacts with the π electron of Li3S by a π halogen bond; (C) the H atom combines with the S atom through a hydrogen bond. For A and B, a heavier halogen atom makes the interaction stronger, while for C, the change of interaction energy is not obvious, showing a small dependence on the nature of the X atom in HCCX. A is more stable than B and their difference in stability decreases as X varies from Cl to I. For the F and Cl complexes, A is weaker than C, however, the former is stronger than the latter in the Br and I complexes. The above three types of interactions have been analyzed by means of electron localization function, electron density difference, and energy decomposition, and the results show that they have similar nature and features with conventional interactions. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
周晓国  李江  俞书勤  马兴孝 《化学学报》2002,60(11):1909-1914
利用B3LYP理论研究了N(~4S)+CH_3X(X = H, F, Cl)反应体系的直接氢抽提过 程,分别得到了各反应物、产物和过渡态的优化构型和谐振频率。同时应用了6- 31G(d), 6-311+G(d,p)和6-311+ + G(2d,2p)基组,考察其大小对反应体系中各物 种构型及能量的影响。理论计算表明,随着基组的增加,反应势垒逐渐降低,反应 吸热减少。对比取代甲烷的情形,结果表明反应过程中卤素原子具有典型的诱导效 应,降低了抽提势垒。  相似文献   

14.
Ab initio quantum chemistry methods were applied to study the bifurcated bent hydrogen bonds Y··· H2CZ (Z = O, S, Se) and Y···H2CZ2 (Z = F, Cl, Br) (Y = Cl, Br) at the MP2/6-311++G(d,p) and MP2/6-311++G(2df,2p) levels. The results show that in each complex there are two equivalent blue-shifted H-bonds Y···H-C, and that the interaction energies and blue shifts are large, the energy of each Y···H-C H-bond is 15–27 kJ/mol, and Δr(CH) = −0.1 − −0.5 pm and Δv(CH) = 30 − 80 cm−1. The natural bond orbital analysis shows that these blue-shifted H-bonds are caused by three factors: large rehybridization; small direct intermolecular hyperconjugation and larger indirect intermolecular hyperconjugation; large decrease of intramolecular hyperconjugation. The topological analysis of electron density shows that in each complex there are three intermolecular critical points: there is one bond critical point between the acceptor atom Y and each hydrogen, and there is a ring critical point inside the tetragon YHCH, so these interactions are exactly H-bonding.  相似文献   

15.
The theoretical IR and Raman spectra of para-halogenoanilines, 4-XC(6)H(4)NH(2) (X=F, Cl and Br) were calculated by using the density functional B3LYP method with the 6-311++G(df,pd) basis set. The theoretical spectra show very good agreement with experiment. The rigorous normal coordinate analyses have been performed, and the detailed vibrational assignment has been made on the basis of the calculated potential energy distributions (PEDs). Several ambiguities and contradictions in the previously reported vibrational assignments have been clarified. The "marker bands" and the effects of the halogen substituent on the characteristic aniline bands in the IR and Raman spectra are discussed.  相似文献   

16.
The mechanisms of the SH (SD) radicals with Cl2 (R1), Br2 (R2), and BrCl (R3) are investigated theoretically, and the rate constants are calculated using a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/6-311G(d,p) and MPW1K/6-311G(d,p) levels. Higher-level energies are obtained at the approximate QCISD(T)/6-311++G(3df, 2pd) level using the MP2 geometries as well as by the multicoefficient correlation method based on QCISD (MC-QCISD) using the MPW1K geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of these reactions, which indicate that the reactions may proceed via an indirect mechanism. The enthalpies of formation for the species XSH/XSD (X = Cl and Br) are evaluated using hydrogenation working reactions method. By canonical variational transition-state theory (CVT), the rate constants of SH and SD radicals with Cl2, Br2, and BrCl are calculated over a wide temperature range of 200-2000 K at the a-QCISD(T)/6-311++G(3df, 2pd)//MP2/6-311G(d, p) level. Good agreement between the calculated and experimental rate constants is obtained in the measured temperature range. Our calculations show that for SH (SD) + BrCl reaction bromine abstraction (R3a or R3a') leading to the formation of BrSH (BrSD) + Cl in a barrierless process dominants the reaction with the branching ratios for channels 3a and 3a' of 99% at 298 K, which is quite different from the experimental result of k3a'/k3' = 54 +/- 10%. Negative activation energies are found at the higher level for the SH + Br2 and SH + BrCl (Br-abstraction) reactions; as a result, the rate constants show a slightly negative temperature dependence, which is consistent with the determination in the literature. The kinetic isotope effects for the three reactions are "inverse". The values of kH/kD are 0.88, 0.91, and 0.69 at room temperature, respectively, and they increase as the temperature increases.  相似文献   

17.
The geometries of triafulvene (TF) and its exocyclic Si, Ge, and Sn analogues complexes with F, Cl, Br, and I halogen atoms (TF(X)···Y, X═C, Si, Ge, and Sn; Y═F, Cl, Br, and I) were studied. The complexes were optimized at DFT(B3LYP)/6–311+G(d,p) level of theory. To assess the aromaticity of the considered complexes the geometry-based (HOMA), magnetism-based (NICS), and recently introduced electronic-based (electric field gradient (EFG(0); Shannon aromaticity (SA)) aromaticity indices were employed. The increasing tendency of aromaticity in each complex species was noted as the series of TF(X)···F > TF(X)···Cl > TF(X)···Br > TF((X)···I. Then, the binding energies corrected by basis set super position error (BSSE) were calculated by single point energy calculations at M06-2X/6-311+G(d,p) level. Natural bond orbital (NBO) analysis confirmed that the charge transfer takes place from TF(X) to the halogen atoms. Some topological parameters, within the framework of the quantum theory of atoms in molecules (QTAIM), were also calculated to estimate the aromaticity of the complexes. It was seen that there are some important correlations between the topological parameters and aromaticity indices. In addition the most striking finding was that all the TF(X) molecules are connected with the halogen atoms through Y···C1═C2 (π) noncovalent interaction. This interaction was also investigated through noncovalent interaction (NCI) analysis.  相似文献   

18.
运用B3LYP和MP2方法在6-311++G(d,p)基组水平上, 对H2CO-XY(XY=F2、Cl2、Br2、ClF、BrF、BrCl)卤键体系进行构型全优化, 得到了O…X—Y型卤键复合物. 结果表明, MP2/6-311++G(d,p)计算结果与实验值较吻合. 并在MP2水平下计算了分子间的相互作用能, 用完全均衡校正CP(counterpoise procedure)方法对基函数重叠误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的电子密度拓扑性质进行了分析研究.  相似文献   

19.
黎安勇  闫秀花  王素纹 《化学学报》2007,65(24):2809-2816
运用量子化学从头算方法, 在MP2/6-311++G(d,p), MP2/6-311++G(2df,2p), MP2/6-311++G(3df,3pd)和QCISD/6-311++G(d,p)水平上, 研究了CH3F, CH3Cl和CH3Br作为质子给体与Cl, Br作为质子接受体形成的氢键CH3…Y. 计算结果表明: 6种复合物中C—H键收缩, 伸缩振动频率增大, 形成蓝移氢键. 分子中原子(Atoms in Molecules, AIM)分析表明, 这些复合物的电子密度拓扑性质与普通氢键有着本质的不同, 在Y…H之间不存在键临界点, 而在Y与C之间存在键临界点, 因此这些相互作用严格地不能称为氢键. 自然键轨道(Natural bond orbital, NBO)分析表明, 在这些复合物中弯曲的CH…Y的特殊结构使得分子间超共轭n(Y)®σ*(C—H)减小到可以忽略; 质子接受体的电子密度没有转移到σ*(C—H)上, 而是转移到了σ*(C—X) (X=F, Cl, Br)上; 存在一定程度的重杂化; 分子内超共轭相互作用减小使得σ*(C—H)的电子密度减少. 这些因素共同导致C—H伸缩振动频率的蓝移.  相似文献   

20.
The reaction of a trinuclear rhenium sulfide cluster compound Re3S7Cl7 with dimethylphenylphosphine and CuX2 (X = Cl or Br) or CuX (X = Cl, Br, or I) formed tetranuclear cluster complexes [(Ph3P)2N][Re3(CuX)(mu3-S)4Cl6(PMe2Ph)3] (X = Cl, Br, or I). Their solutions have the characteristic intense blue color with visible spectral bands near 600 nm. Single-crystal X-ray structures show that three mu-S atoms in the intermediate trinuclear rhenium complex coordinate to a copper atom, forming elongated tetrahedral structures in which Re-Cu bonding interaction is negligible (Re-Cu distances are 3.50 to approximately 3.54 A as compared with Re-Re distances ranging from 2.69 to 2.81 A).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号