首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
The dehydrogenation reaction of methanol on a Rh(111) surface, a Rh(111)V subsurface alloy, and on a Rh(111)V islands surface has been studied by thermal-desorption spectroscopy, reflection absorption infrared spectroscopy, and density-functional theory calculations. The full monolayer of methanol forms a structure with a special geometry with methanol rows, where two neighboring molecules have different oxygen-rhodium distances. They are close enough to form a H-bonded bilayer structure, with such a configuration, where every second methanol C-O bond is perpendicular to the surface on both Rh(111) and on the Rh(111)V subsurface alloy. The Rh(111)V subsurface alloy is slightly more reactive than the Rh(111) surface which is due to the changes in the electronic structure of the surface leading to slightly different methanol species on the surface. The Rh(111)V islands surface is the most reactive surface which is due to a new reaction mechanism that involves a methanol species stabilized up to about 245 K, partial opening of the methanol C-O bond, and dissociation of the product carbon monoxide. The latter two reactions also lead to a deactivation of the Rh(111)V islands surface.  相似文献   

2.
We report results on the catalytic oxidation of carbon monoxide (CO) over clean Ir surfaces that are prepared reversibly from the same crystal in situ with different surface morphologies, from planar to nanometer-scale facets of specific crystal orientations and various sizes. Our temperature-programmed desorption (TPD) data show that both planar Ir(210) and faceted Ir(210) are very active for CO oxidation to form CO2. Preadsorbed oxygen promotes the oxidation of CO, whereas high coverages of preadsorbed CO poison the reaction by blocking the surface sites for oxygen adsorption. At low coverages of preadsorbed oxygen (< or = 0.3 ML of O), the temperature Ti for the onset of CO2 desorption decreases with increasing CO coverage. At high coverages of preadsorbed oxygen (> 0.5 ML of O), T(i) is < 330 K and is independent of CO coverage. Moreover, we find clear evidence for structure sensitivity in CO oxidation over clean planar Ir(210) versus that over clean faceted Ir(210): the CO2 desorption rate is sensitive to the surface morphological differences. However, no evidence has been found for size effects in CO oxidation over faceted Ir(210) for average facet size ranging from 5 to 14 nm. Energetically favorable binding sites for O/Ir(210) are characterized using density functional theory (DFT) calculations.  相似文献   

3.
The CO electro-oxidation reaction was studied on platinum-modified Rh(111) electrodes in 0.5 M H2SO4 using cyclic voltammetry and chronoamperometry. The Pt-Rh(111) electrodes were generated during voltammetric cycles at 50 mV s(-1) in a 30 microM H2PtCl6 and 0.5 M H2SO4 solution. Surfaces generated by n deposition cycles were investigated (Ptn-Rh(111) with n=2, 4, 6, 8, 10, and 16). The blank cyclic voltammograms of these surfaces are characterized by a pronounced sharpening of the hydrogen/(bi)sulfate adsorption/desorption peaks, typical for Rh(111), and the appearance of contributions between 0.1 and 0.4 V, which were ascribed to hydrogen/(bi)sulfate adsorption/desorption on the deposited platinum. At higher potentials, the surface oxidation of Rh(111) is enhanced by the presence of platinum. The structure of the Pt-modified electrodes was investigated by STM imaging. At low Pt coverages (Pt2-Rh(111)), monoatomically high islands are formed, which grow three dimensionally as the number of deposition cycles increases. After eight cycles, the monolayer islands have grown in diameter and range from mono- to multiatomic height. At even higher Pt coverage (Pt16-Rh(111)), the islands grow to particles of approx. 10 nm in diameter, which are 5-6 atoms high. The CO stripping voltammetry on these surfaces is characterized by two peaks: A low-potential, structure-insensitive peak, ascribed to CO reacting at the platinum monolayer islands, whose onset is shifted 150, 250, and 100 mV negatively with respect to pure Rh(111), Pt(111), and polycrystalline Pt, respectively, indicating the enhanced CO electro-oxidation properties of the Pt overlayer system. A peak at higher potentials displays strong structure sensitivity (particle-size effect) and was ascribed to CO reacting on the islands of multiatomic height. Current-time transients recorded on the surface with the highest amount of monolayer islands (Pt4-Rh(111)) also indicate enhanced CO-oxidation kinetics. Comparison of the Pt4-Rh(111) current-time transients recorded at 0.635, 0.675, and 0.750 V versus RHE (reversible hydrogen electrode) with those of pure Rh(111) and Pt(111) shows greatly reduced reaction times. A Cottrellian decay at long times indicates surface-diffusion-limited CO oxidation on the bare Rh(111) surface, while the peak visible at short times is indicative of CO reacting at the monolayer platinum islands. The results presented here show that, as indicated by density functional theory (DFT) calculations, the CO-adlayer oxidation for this system is enhanced compared to both pure Rh and Pt.  相似文献   

4.
The kinetics of the partial oxidation of isobutane with molecular oxygen on Rh(111) single-crystal surfaces were studied by using a collimated molecular beam under ultrahigh vacuum conditions. Both hydrogen and water were shown to form as primary products, not after secondary reforming or water-gas shift steps as it has been suggested in the past. The production of carbon monoxide (but not of carbon dioxide) was also detected. Water production reaches its steady-state rate in a slower fashion than the rest of the products, presumably because of the kinetics of formation and consumption of the hydroxo surface intermediate involved.  相似文献   

5.
The adsorption of carbon monoxide on Rh(111) and on oxygen modified Rh(111) was investigated using thermal desorption spectroscopy, reflection absorption infrared spectroscopy (RAIRS), and density functional theory. The results show that CO adsorbs on Rh(111) in on top sites at low coverages. With increasing coverage hollow sites and bridge sites get occupied according to the RAIRS results. A new vibrational feature at high wave numbers was found in the on top region of the CO stretching frequency. This feature can be explained by a local high density CO structure where two CO molecules are adsorbed in the ( radical3x radical3)R30 degrees structure. The coadsorption of oxygen and carbon monoxide leads to a shift of the CO stretching frequency to higher wave numbers with increasing O to CO ratio. CO adsorption on a (2x1) oxygen layer is possible and RAIRS shows that the CO adsorbs in on top and most likely in bridge sites in this case.  相似文献   

6.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO.  相似文献   

7.
The kinetics for the oxidation of carbon monoxide in the presence of excess oxygen over Pt-Rh alloy catalysts were studied by using the reversed-flow gas chromatography technique. Suitable mathematical analysis equations were derived by means of which the rate constants for the oxidation reaction of carbon monoxide, as well as for the adsorption and desorption of the reactant CO on the catalysts pure Pt, 75 atom% Pt+25 atom% Rh, 50 atom% Pt+50 atom% Rh, 25 atom% Pt+75 atom% Rh and pure Rh supported on SiO2 were determined. All the catalysts show a maximum rate constant for the production of CO2 at a characteristic temperature close to that found in the literature. The rate constants for the adsorption of CO increase generally with increasing temperature, while those for the desorption decrease with increasing temperature. From the variation of the rate constants with temperature activation energies for the oxidation reaction and adsorption of CO were determined, which are sensitive to the composition of the catalytic surface. The appearance of CO2 and carbon, when introducing pure CO into the column with the catalysts, verified a partial dissociative adsorption (e.g., disproportionation) of CO on the catalysts used. The latter indicates a mechanism for the CO oxidation through a partial dissociative adsorption of CO followed by the reaction of adsorbed CO molecules with adsorbed O atoms.  相似文献   

8.
Formaldehyde oxidation was studied on the basal planes of platinum single crystals. Electrochemical and IR spectroscopy data give new information on the mechanism of oxidation. Formaldehyde oxidation at platinum electrodes is a surface-sensitive reaction. From the three basal planes of Pt(hkl), Pt(111) is the most active one. The less active surfaces Pt(100) and Pt(110) are blocked by adsorbed carbon monoxide at the initial stages of the reaction as the formaldehyde is admitted in the solution with the electrode polarized at 0.05 V. Besides CO(ad), other adsorbed species are formed. From these, methylene glycolate, H2COO(ad), is the intermediate of the fast oxidation pathways forming CO2 and HCOOH as soluble products. According to IR data the yields of soluble products at Pt(111) were calculated at 0.6 V, giving 63% for HCOOH and 37% for CO2. At 0.05 V the Pt(111) surface becomes slowly blocked by CO(ad), as observed when the electrode was left in contact with the formaldehyde solution over a period of several minutes. The same blockage occurs during a cyclic voltammogram, which causes a lowering of activity during the second potential scan. A general scheme of the reaction is proposed.  相似文献   

9.
Methanol adsorption on ion‐sputtered Pt(111) surface exhibiting high concentration of vacancy islands and on (2 × 1)Pt(110) single crystal were investigated by means of photoelectron spectroscopy (PES) and thermal desorption spectroscopy. The measurements showed that methanol adsorbed at low temperature on sputtered Pt(111) and on (2 × 1)Pt(110) surfaces decomposed upon heating. The PES data of methanol adsorption were compared to the data of CO adsorbed on the same Pt single crystal surfaces. In the case of the sputtered Pt(111) surface, the dehydrogenation of HxCO intermediates is followed by the CO bond breakage. On the (2 × 1)Pt(110) surface, carbon monoxide, as product of methanol decomposition, desorbed molecularly without appearance of any traces of atomic carbon. By comparing both platinum surfaces we conclude that methanol decomposition occurs at higher temperature on sputtered Pt(111) than on (2 × 1)Pt(110). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
A new simple method is developed for measuring surface diffusion coefficients Ds of gases adsorbed on heterogeneous surfaces, using the reversed-flow version of inverse gas chromatography. The Ds values are found in a time-resolved way, together with the corresponding adsorption energy values, the local adsorbed concentrations, and the local adsorption isotherm values. A relative dynamic adsorption rate constant, an adsorption/desorption rate constant, and a surface reaction rate constant are also found in the same experiment, together with the total diffusion coefficient of the gas in the solid bed. The method has been applied for carbon monoxide, oxygen gas, and carbon dioxide as adsorbates on 75% Pt+25% Rh catalyst supported on SiO2, at 593.8 K.  相似文献   

11.
应用AES,LEED,XPS和TDS研究了Rh(100)上Sm膜和Sm/Rh表面合金以及CO在这两类模型表面的吸附与反应.室温下Sm在Rh(100)上的生长遵从SK模式,Sm膜经900K高温退火后可形成有序表面合金.在室温制备的Sm膜/Rh(100)表面上,室温下CO在Sm上的吸附改变了表面结构,生成SmOx和表面碳.随着Sm覆盖度的增加,低温脱附峰(α-CO)面积迅速下降,且峰温向高温方向位移;表明Sm的空间位阻和电子效应同时起作用.在Sm/Rh合金表面上,CO在约590K出现新的脱附峰,可归属为受Sm电正性修饰的Rh原子上的CO脱附峰  相似文献   

12.
The adsorption of phenol on flat and stepped Pt and Rh surfaces and the dissociation of hydrogen from the hydroxyl group of phenol on Pt(111) and Rh(111) were studied by density functional calculations. On both Pt(111) and Rh(111), phenol adsorbs with the aromatic ring parallel to the surface and the hydroxyl group tilted away from the surface. Furthermore, adsorption on stepped surfaces was concluded to be unfavourable compared to the (111) surfaces due to the repulsion of the hydroxyl group from the step edges. Transition state calculations revealed that the reaction barriers, associated with the dissociation of phenol into phenoxy, are almost identical on Pt and Rh. Furthermore, the oxygen in the dissociated phenol is strongly attracted by Rh(111), while it is repelled by Pt(111).  相似文献   

13.
The stability of the Pt-3d-Pt(111) (3d = Ti, V, Cr, Mn, Fe, Co, or Ni) bimetallic surface structures in the presence of adsorbed oxygen has been investigated by means of density functional theory (DFT). The dissociative binding energies of oxygen on Pt-3d-Pt(111) (i.e., subsurface 3d monolayer) and 3d-Pt-Pt(111) (i.e., surface 3d monolayer) were calculated. All of the Pt-3d-Pt(111) surfaces were found to have weaker oxygen binding energies than pure Pt(111) whereas all of the 3d-Pt-Pt(111) surfaces were found to have stronger oxygen binding energies than pure Pt(111). The total heat of reaction was calculated for the segregation for 3d metal atoms from Pt-3d-Pt(111) to 3d-Pt-Pt(111) when exposed to a half monolayer of oxygen. All of the Pt-3d-Pt(111) subsurface structures were predicted to be thermodynamically unstable with adsorbed oxygen. In addition, the segregation of subsurface Ni and Co to the surfaces of Pt-Ni-Pt(111) and Pt-Co-Pt(111) was investigated experimentally using Auger electron spectroscopy (AES) and high-resolution electron energy loss spectroscopy (HREELS). AES and HREELS confirmed the trend predicted by DFT modeling and showed that both the Pt-Ni-Pt(111) and Pt-Co-Pt(111) surface structures were unstable in the presence of adsorbed oxygen. The activation barrier of the segregation of surbsurface Ni and Co atoms was determined to be 15 +/- 2 and 7 +/- 1 kcal/mol, respectively. These results are further discussed for their implication in the design and selection of cathode bimetallic electrocatalysts for the oxygen reduction reaction (ORR) in polymer electrode membrane (PEM) fuel cells.  相似文献   

14.
We study the water bilayer on clean and hydrogen preadsorbed Rh(111) surfaces by means of density-functional theory with the generalized gradient approximation and the van der Waals density functional, to investigate the influence of adsorbed hydrogen on the adsorption state of water. We found that adsorbed hydrogen interacts repulsively with water through its 1b(1) and 4a(1) orbitals. The repulsion dominates at high hydrogen coverage, resulting in a hydrophobic Rh(111)-H surface.  相似文献   

15.
使用密度泛函方法对C原子在Fe(111)表面吸附团聚和次表层的吸附扩散进行了研究。在炭覆盖度θC <1 ML时,C主要以孤立的原子态存在并导致表面重构;1 ML≤θC ≤2 ML,"mC2+nC"为主要的吸附形式;θC≥2 ML时,复杂的吸附形态比如碳链和岛状碳团簇开始生成。这些复杂岛状碳团簇是Fe(111)表面石墨沉积或碳纳米管生长的成核中心。在次表层,C原子在八面体位稳定存在。C在表面的迁移能垒为0.45 eV,由表面迁移到次表面的的能垒为0.73 eV。虽然C2团簇的生成是热力学有利的,但是C向次表层的迁移动力学上占优。  相似文献   

16.
The adsorption of water (D(2)O) molecules on Rh(111) at 20 K was investigated using infrared reflection absorption spectroscopy (IRAS). At the initial stage of adsorption, water molecules exist as monomers on Rh(111). With increasing water coverage, monomers aggregate into dimers, larger clusters (n = 3-6), and two-dimensional (2D) islands. Further exposure of water molecules leads to the formation of three-dimensional (3D) water islands and finally to a bulk amorphous ice layer. Upon heating, the monomer and dimer species thermally migrate on the surface and aggregate to form larger clusters and 2D islands. Based on the temperature dependence of OD stretching peaks, we succeeded in distinguishing water molecules inside 2D islands from those at the edge of 2D islands. From the comparison with the previous vibrational spectra of water clusters on other metal surfaces, we conclude that the number of water molecules at the edge of 2D islands is comparable with that of water molecules inside 2D islands on the Rh(111) surface at 20 K. This indicates that the surface migration of water molecules on Rh(111) is hindered as compared with the cases on Pt(111) and Ni(111) and thus the size of 2D islands on Rh(111) is relatively small.  相似文献   

17.
吕存琴  凌开成  王贵昌 《催化学报》2009,30(12):1269-1275
 采用广义梯度近似 (GGA) 的密度泛函理论 (DFT) 并结合平板模型, 研究了 CH4 在清洁 Pd(111) 及 O 改性的 Pd(111) 表面发生 C朒 键断裂的反应历程. 优化了裂解过程中反应物、过渡态和产物的几何构型, 获得了反应路径上各物种的吸附能及反应的活化能. 结果表明, CH4 采用一个 H 原子指向表面的构型在 Pd(111) 表面的顶位吸附, CH3 的最稳定的吸附位置为顶位, OH, O 和 H 的最稳定吸附位置均为面心立方. CH4 在清洁 Pd(111) 表面裂解的活化能为 0.97 eV, 低于它在 O 原子改性 (O 没有参与反应) 的 Pd(111) 表面的活化能 1.42 eV, 说明表面氧原子抑制了 CH4 中 C朒 键的断裂. 当亚表面 O 原子和表面 O 原子 (O 参与反应) 共同存在时, C朒 键断裂的活化能为 0.72 eV, 低于只有表层氧存在时的活化能 (1.43 eV), 说明亚表面的 O 原子对 CH4 分子的活化具有促进作用. CH4 在 O 原子改性的 Pd(111) 表面裂解生成 CH3 和 H, 以及生成 CH3 和 OH 的反应活化能分别为 1.42 和 1.43 eV, 说明 CH4 在 O 原子改性的 Pd(111) 表面发生这两种反应的难易程度相当.  相似文献   

18.
The adsorption of water on a Ni(111) single crystal surface, clean as well as precovered with oxygen, has been investigated with thermal desorption spectroscopy (TDS) and measurements of the adsorption-desorption equilibrium combined with XPS (X-ray photoelectron spectroscopy). The measurements have been carried out with water pressures up to 10–5 mbar on surfaces, which have been either clean or precovered with oxygen. On the clean Ni(111) surface the first adsorbate layer with a maximum coverage of 0.42 ML (monolayers) has a desorption energy of 52 kJ/mol and a preexponential factor of desorption of 1016s–1. A second water layer adsorbs with the desorption energy of the ice multilayer but with first order kinetics. On Ni(111) precovered with chemisorbed oxygen an additional state of molecular, more strongly bound water is found, but no dissociation. For higher oxygen precoverages where NiO islands are formed on the surface, also the water dissociation product OH is found adsorbed. On a sample covered with a closed NiO layer, adsorbed OH and molecular water in an energetically not well-defined state are found. High doses of water on oxygen-precovered Ni(111) induce a slow surface modification leading to water dissociation.  相似文献   

19.
Platinum is a catalyst of choice in scientific investigations and technological applications, which are both often carried out in the presence of oxygen. Thus, a fundamental understanding of platinum’s (electro)catalytic behavior requires a detailed knowledge of the structure and degree of oxidation of platinum surfaces in operando. ReaxFF reactive force field calculations of the surface energies for structures with up to one monolayer of oxygen on Pt(111) reveal four stable surface phases characterized by pure adsorbate, high‐ and low‐coverage buckled, and subsurface‐oxygen structures, respectively. These structures and temperature programmed desorption (TPD) spectra simulated from them compare favorably with and complement published scanning tunneling microscopy (STM) and TPD experiments. The surface buckling and subsurface oxygen observed here influence the surface oxidation process, and are expected to impact the (electro)catalytic properties of partially oxidized Pt(111) surfaces.  相似文献   

20.
We investigate the decomposition of ammonia on bimetallic surfaces prepared by the deposition of a monolayer of Fe, Co, or Cu on a Pt(111) surface computationally and experimentally. We explore the correlation between predicted activities based on the nitrogen binding energies with experimental decomposition activity on these bimetallic and corresponding monometallic surfaces. Through density functional theory calculations and microkinetic modeling, it is predicted that the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces, with a monolayer of Fe or Co on top of Pt(111), are active toward decomposing ammonia. In contrast, the corresponding subsurface configurations, Pt-Fe-Pt(111) and Pt-Co-Pt(111) are inactive. These predictions were confirmed experimentally through temperature programmed desorption experiments. Decomposition was seen at temperatures below 350 K for the Fe-Pt-Pt(111) and Co-Pt-Pt(111) surfaces. For the Cu∕Pt(111) system, the surface, subsurface and parent metals were each predicted to be inactive, consistent with experiments, further validating the model predictions. The stability of these bimetallic surfaces in the presence of adsorbed nitrogen is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号