首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of this work is to explore the possibility of using the phenolic monoterpenes (PMs) as leading compounds with antifungal activity against plant disease. The in vitro antifungal activities of carvacrol and thymol against seven kinds of plant pathogenic fungi were evaluated on mycelium growth rate method, and the results showed that carvacrol and thymol exhibited broad spectrum antifungal activity. Structure requirement for the antifungal activity of PMs was also investigated. The preliminary conclusion was that phenolic hydroxyl and monoterpene were basic structures for the antifungal activity of PMs, and the position of phenolic hydroxyl showed less effect. Ester derivatives of carvacrol and thymol were more effective than carvacrol and thymol against plant pathogenic fungi. We suggested that carvacrol, thymol and their ester derivatives could potentially be used as new fungicide leading compounds.  相似文献   

2.
The antifungal activities of dihydrosanguinarine and dihydrochelerythrine, isolated from the leaves of Macleaya microcarpa, were evaluated on 12 plant pathogenic fungi; the two compounds exhibited the highest antifungal activity against Botrytis cinerea Pers. Among the 11 tested plant pathogenic fungi in vitro, the two compounds showed the highest antifungal activity against B. cinerea Pers, with 95.16% and 98.32% mycelial growth inhibition at 50 μg mL?1, respectively. In addition, the two compounds inhibited spore germination in vitro in a concentration-dependent manner. They also showed potent protective and curative effects against Erysiphe graminis and B. cinerea in vivo. This is the first report on the antifungal activity of dihydrosanguinarine and dihydrochelerythrine against pathogenic plant fungi.  相似文献   

3.
Alkyl 2-cyano-3-methylthio-3-phosphonylacrylates were synthesized by the reaction of alkyl 2-cyano-3,3-dimethylthioacrylates with dialkyl phosphites. The structures of the new compounds were characterized by elemental analyses, IR, 1H-, 13C- and 31P-NMR spectral data. These compounds were tested in vitro against pathogenic fungi, namely, Fusarium graminearum, Cytospora mandshurica and Fusarium oxysporum. Amongst all compounds, 2d and 2t were found to be effective against the tested fungi at 50 microg/mL. A half-leaf method was used to determine the in vivo protective, inactivation and curative efficacies of the title products against tobacco mosaic virus (TMV). Title compounds 2a and 2b were found to possess good in vivo curative, protection and inactivation effects against TMV with inhibitory rates at 500 mg/L of 60.0, 89.4 and 56.5 and 64.2, 84.2 and 61.2 %, respectively. To the best of our knowledge, this is the first report on the antiviral and antifungal activity of alkyl 2-cyano-3-methylthio-3-phosphonylacrylates.  相似文献   

4.
To find new lead compounds with high antifungal activity, a series of new thiourea derivatives containing 1,3,4-thiadiazole and thioether skeleton was designed via linking the active sub-structures. The target compounds were prepared via three steps from the commercially available thiosemicarbazide. Their structures were characterized by means of HRMS, 1H NMR, 13C NMR and IR spectroscopy. The preliminary results indicate that the title compounds show various antifungal activity against the tested fungi. Compounds 4c, 4g, 4h, 4k, 4n, 4o, 4p, 4q and 4r display excellent antifungal activities against one or more tested fungi with inhibitory efficiencies of 90%-100% at 200 μg/mL. Especially, compound 4o shows the best inhibitory effect against Curvularia lunata, Cotton Fusarium Wilt, P. P. var nicotianae and Fusarium spp. with the EC50 values of 28.12, 30.41, 15.2 and 6.22 μg/mL, respectively, which are even superior to those of triadimefon(98.73, 96.58, 105.37 and 102.18 μg/mL). The preliminary structure-activity relationship indicates that allyl and aromatic groups are favorable to their antifungal activities.  相似文献   

5.
Coumarin derivatives have been reported as strong antifungal agents against various phytopathogenic fungi. In this study, inhibitory effects of nine coumarinyl Schiff bases were evaluated against the plant pathogenic fungi (Fusarium oxysporum f. sp. lycopersici, Fusarium culmorum, Macrophomina phaseolina and Sclerotinia sclerotiourum). The compounds were demonstrated to be efficient antifungal agents against Macrophomina phaseolina. The results of molecular docking on the six enzymes related to the antifungal activity suggested that the tested compounds act against plant pathogenic fungi, inhibiting plant cell-wall-degrading enzymes such as endoglucanase I and pectinase. Neither compound exhibited inhibitory effects against two beneficial bacteria (Bacillus mycoides and Bradyrhizobium japonicum) and two entomopathogenic nematodes. However, compound 9 was lethal (46.25%) for nematode Heterorhabditis bacteriophora and showed an inhibitory effect against acetylcholinesterase (AChE) (31.45%), confirming the relationship between these two activities. Calculated toxicity and the pesticide-likeness study showed that compound 9 was the least lipophilic compound with the highest aquatic toxicity. A molecular docking study showed that compounds 9 and 8 bind directly to the active site of AChE. Coumarinyl Schiff bases are promising active components of plant protection products, safe for the environment, human health, and nontarget organisms.  相似文献   

6.
Condensation reactions of 1,1′‐diacetylferrocene with ethanolamine were studied. The obtained compounds were further investigated for their ligation and biological properties with Co(II), Cu(II), Ni(II) and Zn(II) metal ions. The synthesized compounds were characterized by their physical, spectral and analytical properties and screened for their antibacterial properties against pathogenic bacterial strains, e.g. Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using the agar‐well diffusion method. All the compounds have shown good antibacterial and antifungal activity, which increased on coordination with the metal ions, thus introducing a potential class of organometallic‐based antibacterial and antifungal agents. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Two new eremophilenolides, ligushicins A (1) and B (2), and two known compounds including β-sitosterol and ursolic acid were isolated from Ligulariopsis shichuana. The structures of new compounds were established on the basis of 1D and 2D NMR data and HRESIMS data interpretation. The absolute configuration of new compounds was assigned by ECD spectroscopy, and that of ligushicins A (1) was confirmed by X-ray diffraction analysis. The antifungal and antifeedant activities of new compounds were evaluated against four plant pathogenic fungi and third-instar larvae of Plutella xylostella, respectively. Ligushicins A (1) and B (2) exhibited potent antifungal activity against Botrytis cinerea and Fusarium oxysporum with minimum inhibitory concentration (MIC) values ranging from 50 to 100 mg/L, while they also exhibited weak antifeedant activities.  相似文献   

8.
In this study, antipathogenic activities of the twig essential oil and its constituents from Chamaecyparis formosensis Matsum were evaluated in vitro against six plant pathogenic fungi. The essential oil from the fresh twigs was isolated using hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. Twenty-five compounds were identified, representing 98.9% of the oil. The main components were beta-eudesmol (25.1%), tau-muurolol (21.6%), elemol (15.0%), totarol (14.9%), and alpha-cadinol (12.4%). The twig oil (500 mcirog/mL) showed growth inhibitory activity against the phytopathogenic fungi, Fusarium oxysporum, Pestalotiopsis funereal, and Ganoderma austral, with antifungal indices of 92.7%, 71.1%, and 87.7%, respectively. In addition, the oil suppressed totally the growth of Rhizoctonia solani, Colletotrichum gloeosporioides, and Fusarium solani. In order to ascertain the source compounds of these antipathogenic activities, the main components were individually evaluated. Tau-Muurolol and alpha-cadinol exhibited excellent activity against F. oxysporum, R. solani, C. gloeosporioides, and F. solani, with IC50 < 50 microg/mL. These compounds also efficiently inhibited the mycelial growths of P. funereal and G. austral. Thus, alpha-cadinol and tau-muurolol could be considered as potential natural fungicides for controlling fungal pathogens and worth.  相似文献   

9.
In order to find novel antifungal agents with good activity and aqueous solubility,a series of SYN-2869 analogues containing a pyridine ring were synthesized and evaluated for their in vitro antifungal activity and water solubility.The results indicated that some compounds showed potent activity against six pathogenic fungi.In particular,the analogue 17a having an isobutyl substitution on the triazolone exhibited significant broad spectrum antifungal activity.In addition,the water solubility of compound 17a was sufficiently improved over SYN-2869.  相似文献   

10.
A series of N-β-d-glucopyranosyl-N’-substituted phenyl ureas were synthesized by reaction of glucosyl isocyanate with arylamines and glycosamine with aryl isocyanates, and a series of d-glucofurano-imidazolidine-2-ones were obtained via deacetylation of glycosylureas. Although some of the compounds have already been described, most were prepared for the first time in this work. The structures of all the compounds synthesized were confirmed by IR, 1H NMR, and, in part, by 13C NMR. Antifungal activity of the title compounds was determined against four kinds of plant pathogenic fungi, Sclerotinia sclerotiorum, Fusarium graminearum, Fusarium oxysporum, and Bipolaris maydis. Preliminary bioassay indicates that most of glycosylureas had some activity against S. sclerotiorum; for some, the antifungal activity was strong. However, most of the imidazolidine-2-ones had weak antifungal activity.  相似文献   

11.
In the course of searching for new antifungal agents, a new pentanorlanostane derivative, cladosporide A (1), was isolated along with ergosterol, ergosterol peroxide and 23,24,25,26,27-pentanorlanost-8-ene-3beta,22-diol (2) from Cladosporium sp. as a characteristic antifungal agent against the human pathogenic filamentous fungus Aspergillus fumigatus. The structure of 1 was established as 3beta,22-dihydroxy-23,24,25,26,27-pentanorlanostane-29-al by spectroscopic and chemical investigation and X-ray crystallographic analysis. Inhibitory activity against A. fumigatus (IC80 0.5-4.0 microg/ml) was observed for cladosporide A (1), but no activity was observed against pathogenic yeasts, Candida albicans and Cryptococcus neoformans, and other pathogenic filamentous fungi, Aspergillus niger and A. flavus. The 4beta-aldehyde residue in 1 might be essential for the antifungal activity, since 23,24,25,26,27-pentanorlanost-8-ene-3beta,22-diol (2) showed no inhibition against the above four fungi.  相似文献   

12.
Abstract

Phenazine-1-carboxylic acid (PCA) as a natural product which has significant inhibition effects against many soil-borne fungal phytopathogens in agricultural application and has been registered in China as the fungicide against rice sheath blight. In order to find new higher fungicidal activities lead compounds and develop new eco-friendly agrochemicals, we introduced substructure piperazines which also have high biological activity into PCA, designed and synthesized a series of phenazine-1-carboxylic piperazine derivatives, and their structures were confirmed by 1H NMR and HRMS. Most compounds exhibited certain in vitro fungicidal activities. In particular, Compounds 5r exhibited the activity against all the tested pathogenic fungi, such as Rhizoctonia solani, Alternaria solani, Fusarium oxysporum, Fusarium graminearum, Pyricularia oryzac Cavgra, with the EC50 value of 24.6μM, 42.9μM, 73.7μM, 73.8μM, 34.2μM, respectively, more potent activities than PCA (33.2μM, 81.5μM, 186.5μM, 176.4μM, 37.3μM). This result provided a highly active lead compound for the further structure optimization design.  相似文献   

13.
Sun L  Wu J  Luo M  Wang X  Pan M  Gou Z  Sun D 《Molecules (Basel, Switzerland)》2011,16(11):9739-9754
A series of new substituted benzophenone derivatives was designed, synthesized and screened for their antifungal and antibacterial activities. The bioassays indicated that most of the synthesized compounds showed some antifungal activity against the tested phytopathogenic fungi, but lower antibacterial activities towards the five vibrios isolated from marine sources. The preliminary structure activity relationship (SAR) of the compounds was also discussed.  相似文献   

14.
Abstract

A series of biologically active phenoxy derivatives of 2-substituted benzoxazole organophosphates have been synthesized by the reaction of O-(naphthyl benzoxazolyl-2-) phosphorodichloridate/phosphorodichloridothioate with phenol/4-chlorophenol/4-nitroph- enol in 1:1 and 1:2 molar ratios. These compounds have been characterized on the basis of elemental analysis, IR, 1H NMR, 31P NMR, and mass spectral studies. The antibacterial activity of these 2-substituted benzoxazole phenoxy derivatives has been evaluated against pathogenic bacteria Staphylococcus aureus (+ve) and Escherichia coli (?ve). The antifungal activity of these 2-substituted benzoxazole phenoxy derivatives has been evaluated against pathogenic fungi Aspergillus niger and Fusarium oxysporium. All compounds were found to have significant antibacterial and antifungal activity.  相似文献   

15.
In order to identify natural products for plant disease control, the essential oil of star anise (Illicium verum Hook. f.) fruit was investigated for its antifungal activity on plant pathogenic fungi. The fruit essential oil obtained by hydro-distillation was analyzed for its chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). trans-Anethole (89.5%), 2-(1-cyclopentenyl)-furan (0.9%) and cis-anethole (0.7%) were found to be the main components among 22 identified compounds, which accounted for 94.6% of the total oil. The antifungal activity of the oil and its main component trans-anethole against plant pathogenic fungi were determined. Both the essential oil and trans-anethole exhibited strong inhibitory effect against all test fungi indicating that most of the observed antifungal properties was due to the presence of trans-anethole in the oil, which could be developed as natural fungicides for plant disease control in fruit and vegetable preservation.  相似文献   

16.
A series of newly synthesized compounds of quinazolinone by various substituents was screened for its pharmacological activities. These included their action as antibacterial agents against pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and as antifungal agents against Aspergillus niger and pathogenic yeast (Candida albicans). The presently investigated compounds were synthesized in higher yields, and the structure features were elucidated on the basis of IR, 1H‐NMR, and mass and elemental analysis data. These compounds were also evaluated as antioxidant agent. The results revealed that six compounds ( 2a , 11b , 11a , 2b , 13a , and 3c ) exhibited higher antimicrobial activity against the tested pathogenic strains. In addition, it was found that compound 6a exhibited a radical scavenging activity higher than other studied compounds.  相似文献   

17.
A series of 3-substituted quinazolinones, 2-substituted quinoxalines and 2-substituted benzopyrans were synthesized and evaluated for their antifungal activity in vitro. The new compounds revealed excellent in vitro antifungal activity with broad spectrum. The structure-activity relationships (SARs) of the derivatives were analyzed. Compound 9A2 exhibits better antifungal activity against 5 tested fungi in vitro than fluconazole, especially against Trichophyton rubrum and Microsporum gypseum. This study provides a series of novel lead compounds for the development of non-azole antifungal agents.  相似文献   

18.
Strobilurins have become one of the most important classes of agricultural fungicides. To search for new strobilurin derivatives with high activity against resistant pathogens, a series of new β‐methoxyacrylate analogues containing substituted pyrimidine in the side chain with strobilurin pharmacophore were synthesized and their biological activities were tested. The compounds were confirmed and characterized by 1H‐NMR, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds 1 exhibited potent antifungal activities against Colletotrichum orbiculare, Botrytis cinerea Pers and Phytophthora capsici Leonian at a concentration of 50 μg mL?1. Notably, compound 1b (R = 2,5‐dimethylphenyl) showed better antifungal activity against all the tested fungi than the commercial strobilurin fungicide azoxystrobin.  相似文献   

19.
A small focused library of eighteen new 1,2,3-triazole tethered acetophenones has been efficiently prepared via click chemistry approach and evaluated for their antifungal and antioxidant activity. The antifungal activity was evaluated against five human pathogenic fungal strains: Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger, and Cryptococcus neoformans. Among the synthesized compounds, 9c, 9i, and 9p found to be more potent antifungal agents that the reference standard. These 1,2,3-triazole based derivatives were also evaluated for antioxidant activity, and compound 9h was found to be the most potent antioxidant as compared to the standard drug. Furthermore, molecular docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of fungal C. albicans enzyme P450 cytochrome lanosterol 14a-demethylase. Moreover, the synthesized compounds were also analyzed for ADME properties and showed potential as good oral drug candidates.  相似文献   

20.
脱乙酰壳多糖抑制真菌生长的构效关系   总被引:1,自引:0,他引:1  
本研究目标是研究脱乙酰壳多糖的化学结构(乙酰化程度DA和聚合程度DP)与它的抑制真菌生长能力之间的构效关系. 选用了12个分属于3个系列、化学结构相关而又不同的、结构清晰的脱乙酰壳多糖和3种不同的真菌(Fusarium solani, Fusarium graminearumUstilago maydis). 通过分别测定每个脱乙酰壳多糖对3种真菌的生长曲线和最低抑制浓度(MIC, minimum inhibitory concentration); 比较各个系列脱乙酰壳多糖的MIC和它的化学结构(DA和DP)之间的关系. 结果显示对同一种真菌, 不同脱乙酰壳多糖的抑制真菌生长曲线形态和MIC是各不相同的; 同样同一脱乙酰壳多糖, 对不同真菌也有其特殊的生长曲线和MIC; 通常随着脱乙酰壳多糖中DA的递增, MIC是增加的, 其抑制真菌的活性是降低的; 在DA相同的条件下, 随着DP的递增, MIC也是增加的, 其抑制真菌的活性是减低的. 所以可以说, 脱乙酰壳多糖抑制真菌生长的能力与其化学结构紧密相关, 在本实验的条件下, 脱乙酰壳多糖分子越小, 分子中的自由氨基越多, 抑制真菌的活性越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号