共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of thallation of fluorene with thallium triacetate (TTA) in HOAc-H2SO4 solutions led to the rate expression The rate of thallation is found to increase with increasing acid concentration, and a sixth-order dependence on [H2SO4] is observed. Decrease in solvent polarity increases the rate of thallation. The effect of substituents is in accord with the electrophilic substitution at an aromatic system. Thallation occurs at 4-position. A mechanism similar to aromatic bromination is proposed for the thallation of fluorene. 相似文献
2.
Oxidative transformation of ciprofloxacin by alkaline permanganate – A kinetic and mechanistic study
Kiran A. Thabaj Suresh D. KulkarniShivamurti A. Chimatadar Sharanappa T. Nandibewoor 《Polyhedron》2007
This spectroscopic study presents the kinetics and degradation pathways of oxidation of ciprofloxacin by permanganate in alkaline medium at constant ionic strength of 0.04 mol−3. Orders with respect to substrate, oxidant and alkali concentrations were determined. Effect of ionic strength and solvent polarity of the medium on the rate of the reaction was studied. The oxidation products were identified by LC-ESI-MS technique. Product characterization of ciprofloxacin reaction mixtures indicates the formation of three major products corresponding to m/z 263, 306, and 348 (corresponding to full or partial dealkylation of the piperazine ring). The piperazine moiety of ciprofloxacin is the predominant oxidative site to KMnO4. Product analyses showed that oxidation by permanganate results in dealkylation at the piperazine moiety of ciprofloxacin, with the quinolone ring essentially intact. The reaction kinetics and product characterization point to a reaction mechanism that likely begins with formation of a complex between ciprofloxacin and the KMnO4, followed by oxidation at the aromatic N1 atom of piperazine moiety to generate an anilinyl radical intermediate. The radical intermediates subsequently undergo N-dealkylation. Investigations of the reaction at different temperatures allowed the determination of the activation parameters with respect to the slow step of proposed mechanism. The proposed mechanism and the derived rate laws are consistent with the observed kinetics. 相似文献
3.
The kinetics of oxidation of dimethylsulphoxide (DMSO) by sodium N-bromobenzenesulphonamide or bromamine-B (BAB) has been studied in HClO4, HCl and NaOH media, at 35°C, with OsO4 as a catalyst in the latter medium. In acid medium, the rate shows a first order dependence on [BAB] and second order in [H+], but Is Independent of substrate concentration. Alkali retards the reaction (Inverse first order) and the rate is independent of oxidant concentration, but shows fractional order in [DMSO] and depends on (0sO4]2. The solvent isotope effect was studied by using D2O. Activation parameters have also been determined. Mechanisms proposed and the derived rate laws are consistent with the observed kinetics. 相似文献
4.
The combustion chemistry of morpholine (C(4)H(8)ONH) has been experimentally investigated recently as a representative model compound for O- and N-containing structural entities in biomass. Detailed profiles of species indicate the self-breakdown reactions prevailing over oxidative decomposition reactions. In this study, we derive thermodynamic and kinetic properties pertinent to all plausible reactions involved in the self-decomposition of morpholine and its derived morphyl radicals as a crucial task in the development of comprehensive combustion mechanism. Potential energy surfaces have been mapped out for the decomposition of morpholine and the three morphyl radicals. RRKM-based calculations predict the self-decomposition of morpholine to be dominated by 1,3-intramolecular hydrogen shift into the NH group at all temperatures and pressures. Self-decomposition of morpholine is shown to provide pathways for the formation of the experimentally detected products such as ethenol and ethenamine. Energetic requirements of all self-decomposition of morphyl radicals are predicted to be of modest values (i.e., 20-40 kcal/mol) which in turn support the occurrence of breaking-down reactions into two-heavy-atom species and the generation of doubly unsaturated four-heavy-atom segments. Calculated thermochemical parameters (in terms of standard enthalpies of formation, standard entropies, and heat capacities) and kinetic parameters (in terms of reaction rate constants at a high pressure limit) should be instrumental in building a robust kinetic model for the oxidation of morpholine. 相似文献
5.
B. Sairam Patra 《Thermochimica Acta》2006,441(1):84-88
Thermal decomposition of anhydrous strontium titanyl oxalate proceeds through a series of complex reactions to form strontium metatitanate at high temperature. Among them the decomposition of oxalate is the first major thermal event. A kinetic study of oxalate decomposition in the temperature range 553-593 K has been carried out by cooled gas pressure measurement in vacuum. Results fitted the Zhuravlev equation for almost the entire α-range (0.05-0.92) indicating the occurrence of a diffusion-controlled, three-dimensional rate process. The activation energy has been calculated to be 164 ± 10 kJ mol−1. Results from elemental analysis, TGA, IR and SEM studies of undecomposed and partially decomposed samples have been used to supplement kinetic observations in formulating the mechanism for oxalate decomposition. 相似文献
6.
7.
Si S Bhattacharjee RR Banerjee A Mandal TK 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(4):1256-1265
Synthetic oligopeptides containing redox-active tyrosine residues have been employed to prepare gold and silver nanoparticles. In this reduction process an electron from the tyrosinate ion of the peptide is transferred to the metal ion at basic pH through the formation of a tyrosyl radical, which is eventually converted to its dityrosine form during the reaction. This reaction mechanism was confirmed from UV-visible, fluorescence, and EPR spectroscopy and was found to be pH-dependent. Transmission electron microscopy measurement shows that the average size and the monodispersity of gold nanoparticles increase as the number of tyrosine residues in the peptide increases. The kinetic study, based on spectrophotometric measurements of the surface plasmon resonance optical property, shows that the rate of formation of gold nanoparticles was much faster at higher pH than at lower pH and was also dependent on the number of tyrosine residues present in the peptide. The dityrosine form of the peptide was found to retain reducing properties like those of tyrosine in basic medium. 相似文献
8.
In a non-aqueous medium, oxidation kinetics of thioglycolic, thiolactic and thiomalic acids by benzimidazolium dichromate have been studied. In the temperature range of 20°C–50°C, oxidation kinetics were examined by spectrophotometry. In terms of oxidant, the reaction is dependent on the unitary order. In the case of thioacids, we find the Michaelis-Menten type kinetics. Hydrogen-ions act as catalyst in this process. The reaction rate slows down as the Mn2+ ion concentration increases. The reaction does not cause acrylonitrile to polymerize. The formation of a thioester into the pre-equilibrium followed by its progressive degradation was postulated as a mechanism. 相似文献
9.
The kinetics of oxidation of the aliphatic primary amines, n-propylamine, n-butylamine, and isoamylamine, by sodium N-bromobenzenesulfonamide or bromamine-B (BAB) in sodium hydroxide medium has been studied at 35° C. The reaction rate shows a first-order dependence each on [BAB] and [amine], and fractional order on [OH-]. Additions of halide ions and the reduction product of BAB (benzenesulfonamide), and variation of ionic strength and dielectric constant of the medium do not have any significant effect on the reaction rate. Activation parameters have been evaluated. A Taft linear free-energy relationship is observed for the reaction with ρ* = −3.0 and δ = − 2.0 indicating that electron-donating groups enhance the rate. An isokinetic relationship is observed with β = 393 K indicating that enthalpy factors control the rate. The existence of the relationship has been supported by the Exner criterion. Mechanisms consistent with the observed kinetic data have been proposed. © 1996 John Wiley & Sons, Inc. 相似文献
10.
Budischowsky David Zwirchmayr Nele Sophie Hosoya Takashi Bacher Markus Hettegger Hubert Potthast Antje Rosenau Thomas 《Cellulose (London, England)》2021,28(10):6051-6071
Cellulose - Chromophores, colored substances of rather high stability that reduce brightness, are present in all kinds of cellulosic products, such as pulp, fibers, aged cellulosic material, and... 相似文献
11.
Sukanya L. Ravishankar Ramesha A. Baba Rangaswamy Channe D. Gowda 《Transition Metal Chemistry》2007,32(3):407-410
A detailed study of kinetics is required to predict the susceptibility of amino acid residues towards metal-catalyzed oxidation.
The effect of quinolinium dichromate on the oxidation of a set of amino acid residues with different hydrophobicity in HClO4 medium at 25 °C has been fairly studied. The kinetics of the reaction was followed spectrophotometrically at λmax = 440 nm. The reaction has unit dependence on each of the substrates, quinolinum dichromate and acid concentrations. The
effect of dielectric constant of the medium on the rate was studied. The induced polymerization of acrylonitrile was observed.
The oxidation products were isolated and characterized. Dependence of reaction rate on temperature has been studied and activation
parameters were computed. A mechanism consistent with the observed results has been proposed. Of the four amino acid residues,
proline is oxidized at a faster rate than all other amino acids. This may be due to the hydrophobic induced oxidation. Therefore,
the overall order of amino acid sensitivity to oxidation was found to be Pro > Thr > Ser > Lys. 相似文献
12.
Kini Anand K. Farokhi Sairabanu A. Nandibewoor Sharanappa T. 《Transition Metal Chemistry》2002,27(5):532-540
The kinetics of the RuIII-catalysed oxidation of L-leucine and L-isoleucine by alkaline permanganate were studied and compared, spectrophotometrically using a rapid kinetic accessory. The reaction is first order with respect to [oxidant] and [catalyst] with an apparently less than unit order in [substrate] and [alkali] respectively. The results suggest the formation of a complex between the amino acid and the hydroxylated species of ruthenium(III). The complex reacts further with the alkaline permanganate species in a rate-determining step, resulting in the formation of a free radical, which again reacts with the alkaline permanganate species in a subsequent fast step to yield the products. The reaction constants involved in the mechanism were calculated. There is a good agreement between observed and calculated rate constants under different experimental conditions. The activation parameters with respect to the slow step of the mechanism for both the amino acids were calculated and discussed. Of the two amino acids, leucine is oxidised at a faster rate than isoleucine. 相似文献
13.
The kinetics of oxidation of some monosaccharides viz., D-ribose, D-xylose, and D-arabinose, D-glucose, D-fructose, D-galactose, 2-deoxyglucose, and α-methyl glucopyranoside by MnO42? in aqueous alkaline medium have been studied. The rate of oxidation has been found to be first-order both with respect to [oxidant] and [sugar]. The rate is independent of [OH?] under experimental conditions of [OH?] > 0.5 M where the oxidant is stable. The effect of ionic strength is negligible on the rate. A mechanism involving the formation of a 5-membered cyclic intermediate complex between MnO42? and 1,2-enediol form of the sugar is proposed. The intermediate complex decomposes to give products in the subsequent slow step. The involvement of 1,2-enediol form receives support from the reaction of α-methyl glucopyranoside, which exists in ring structure in alkaline solution reacting much slower than glucose with MnO42? under similar conditions. Second-order rate constant k″ and activation parameters have been evaluated. The series of reactions exhibits a clear demonstration of applicability of isokinetic phenomenon where Arrhenius plots for all the reactions are found to intersect at a common point (295 K). © 1995 John Wiley & Sons, Inc. 相似文献
14.
The kinetics of oxidation of Isoniazid (INH) by sodium N‐haloarenesulfonamidates, chloramine‐T (CAT), bromamine‐T (BAT), chloramine‐B (CAB), and bromamine‐B (BAB), has been studied in alkaline medium at 303 K. The oxidation reaction follows identical kinetics with a first‐order dependence on each [oxidant] and [INH] and an inverse fractional‐order on [OH−:]. Addition of the reaction product (p‐toluenesulfonamide or benzenesulfonamide) had no significant effect on the reaction rate. Variation of ionic strength and addition of halide ions have no influence on the rate. There is a negative effect of dielectric constant of the solvent. Studies of solvent isotope effects using D2O showed a retardation of rate in the heavier medium. The reaction was studied at different temperatures, and activation parameters have been computed from the Arrhenius and Eyring plots. Isonicotinic acid was identified as the oxidation product by GC‐MS. A two‐pathway mechanism is pro‐posed in which RNHX and the anion RNX− interact with the substrate in the rate‐limiting steps. The mechanism proposed and the derived rate laws are consistent with the observed kinetics. The rate of oxidation of INH increases in the order: BAT > BAB > CAT > CAB. This effect is mainly due to electronic factors. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 221–230, 2000 相似文献
15.
Kinetic data for the colloidal MnO2–thiourea redox system are reported for the first time. The reduction of water-soluble colloidal MnO2 by thiourea (sulfur containing reductant) in aqueous perchloric acid medium has shown that it proceeds in two stages, i.e., a fast stage followed by a relatively slow second stage. The log (absorbance) versus time plot deviates from linearity. The kinetics of both the stages was investigated spectrophotometrically. The first-order kinetics with respect to [thiourea] at low concentration shifts to zero-order at higher concentration. The reaction rate increases with [HClO4] and the kinetics reveals complex order dependence in [HClO4]. Addition of P2O
7
4−
and F− in the form of Na4P2O7 and NaF, respectively, has inhibitory effect on the reaction rate. The reaction proceeds through the fast adsorption of thiourea on the surface of the colloidal MnO2. A mechanism involving the protonated thiourea as the reactive reductant species is proposed. The observed results are discussed in terms of Michaelis–Menten/Langmuir–Hinshelwood model. From the observed kinetic data, colloidal MnO2–thiourea adsorption constant (K
ad1) and rate constant (k
1) were calculated to be 1.25×1010 mol−1 dm3 and 3.1×10−4 s−1, respectively. The variation of temperature does not have any effect on the reaction rate. 相似文献
16.
The kinetics of oxidation of ethanolamines, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA), by sodium N‐bromobenzenesulfonamide or bromamine‐B (BAB) in alkaline buffer medium (pH 8.7–12.2) has been studied at 40°C. The three reactions follow identical kinetics with first‐order in [oxidant] and fractional‐order each in [substrate] and [OH?]. Under comparable experimental conditions, the rate of oxidation increases in the order: DEA > TEA > MEA. The added reaction product, benzenesulfonamide, retards the reaction rate. The addition of halide ions and the variation of ionic strength of the medium have no significant effect on the rate. The dielectric effect is negative. The solvent isotope effect k′(H2O)/k′(D2O) ≈ 0.92. Activation parameters for the composite reaction and for the rate‐limiting step were computed from the Eyring plots. Michaelis‐Menten type of kinetics is observed. The formation and decomposition constants of ethanolamine‐BAB complexes are evaluated. An isokinetic relationship is observed with β = 430 K indicating that enthalpy factors control the rate. For each substrate, a mechanism consistent with the kinetic data has been proposed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 480–490, 2001 相似文献
17.
Kinetics of oxidation of indole‐3‐acetic acid (IAA) by peroxomonosulphate (PMS) in aqueous acetonitrile medium has been investigated. The reaction follows a total second order, first order each with respect to [IAA] and [PMS]. The rate of the reaction was not affected by added [H+]. Variation of ionic strength (μ) had no influence on the rate. Increase of percentage of acetonitrile decreased the rate. Absence of any polymerization indicated a nonradical pathway. Activation and thermodynamic parameters have been computed. A suitable kinetic scheme based on these observations is proposed. The reactivity of PMS towards IAA was found to be higher than that with peroxodisulphate. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 569–574, 2002 相似文献
18.
S. -Y. Huo J. -H. Shan C. -Y. Song S. -G. Shen H. -W. Sun 《Journal of the Iranian Chemical Society》2007,4(4):414-417
The kinetics and mechanism of oxidation of aspartic acid by the bis(hydrogen periodato) complex of Cu(III), [Cu(HIO6)2]5?, is studied in an alkaline medium. The reaction rate is first order with respect to Cu(III) and fractional order with respect to aspartic acid. The value of the observed rate constant is found to decrease with the increase in concentrations of either OH? or IO4 ?. There is a positive salt effect, and the free radical has been determined. In view of these kinetics phenomena, a plausible mechanism is proposed and the rate equations derived from the mechanism can explain all experimental results. The activation parameters along with the rate constants of the rate-determining step are calculated. 相似文献
19.
The kinetics of oxidation of L-cystine (L-CYS) by diperiodatocuprate (III) (DPC) in aqueous alkaline medium at a constant
ionic strength of 0.20 mol/1 was studied spectrophotometrically at 298 K. The reaction between DPC and L-cystine in alkaline
medium exhibits 1: 4 stoichiometry (L-cystine: DPC = 1: 4). The reaction is of first order in [DPC] and has less than unit
order in [L-CYS] and [alkali], negative fractional order in [periodate] and intervention of free radicals was observed in
the reaction. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)-L-ystine
complex, which decomposes slowly in a rate determining step followed by other fast steps to give the products. The main products
were identified by spot test, IR and GC-MS. The reaction constants involved in the different steps of the mechanism are calculated.
The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities
were also determined. 相似文献
20.
The kinetics of oxidation of the aliphatic primary amines, n-propylamine, n-butylamine, and isoamylamine, by N-sodio-N-bromobenznesulfonamide or bromamine-B (BAB), in the presence of osmium(VIII), has been studied in alkaline medium at 35°C. In the presence of the catalyst, the experimental rate law for the oxidation of the amine substrate (S) takes the form, rate=k[BAB][OsO4][OH−]x, which in the absence of the catalyst changes to the form, rate=k[BAB][S][OH−]y, where x and y are less than unity. Additions of halide ions and the reduction product of BAB (benzenesulfonamide), and the variation of ionic strength of the solvent medium have no effect on the reaction rate. Activation parameters have been evaluated. The proposed mechanism assumes the formation of a complex intermediate between the active oxidant species, PhSO2NBr−, and the catalyst, OsO4, in the rate determining step. This complex then interacts with the substrate amine in fast steps to yield the end products. The average value for the deprotonation constant of monobromamine-B, forming PhSO2NBr−, is evaluated for the Os(VIII) catalyzed reactions of the three amines in alkaline medium as 9.80×103 at 35°C. The average value for the same constant for the uncatalyzed reactions is 1.02×104 at 35°C. © 1997 John Wiley & Sons, Inc. 相似文献