首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a memristor with a fourth degree polynomial memristance function is used in the simplest chaotic circuit which has only three circuit elements: a linear passive inductor, a linear passive capacitor, and a nonlinear active memristor. We use second order exponent internal state memristor function and fourth degree polynomial memristance function to increase complexity of the chaos. So, the system can generate double-scroll attractor and four-scroll attractor. Systematic studies of chaotic behavior in the integer-order and fractional-order systems are performed using phase portraits, bifurcation diagrams, Lyapunov exponents, and stability analysis. Simulation results show that both integer-order and fractional-order systems exhibit chaotic behavior over a range of control parameters.  相似文献   

2.
Zheng  Mingwen  Li  Lixiang  Peng  Haipeng  Xiao  Jinghua  Yang  Yixian  Zhao  Hui 《Nonlinear dynamics》2017,89(4):2641-2655
Nonlinear Dynamics - This paper mainly investigates the finite-time projective synchronization problem of memristor-based delay fractional-order neural networks (MDFNNs). By using the definition of...  相似文献   

3.
4.
5.
6.
This letter investigates the stabilization of three-dimensional fractional-order chaotic systems, and proposes a single state adaptive-feedback controller for fractional-order chaos control based on Lyapunov stability theory, fractional order differential inequality, and adaptive control theory. The present controller which only contains a single state variable is simple both in design and implementation. Simulation results for several fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme.  相似文献   

7.
We design a new three-dimensional double-wing fractional-order chaotic system with three quadratic terms, confirmed by numerical simulation and circuit implementation. We then study the synchronization between the new double-wing fractional-order chaotic system and different Lorenz systems with different structures. In the process of the synchronization, the definition of ‘the simplest response system’ and the practical method of designing the circuit have been originally proposed. The circuit of ‘the simplest response system’ (even the simplest incommensurate-order response system), holding different structures with the drive system, of any one integral or fractional drive system now can be designed effectively and sufficiently. Our results are supported by numerical simulation and circuit implementation.  相似文献   

8.
In this paper, the problem of finite-time stability of fractional-order complex-valued memristor-based neural networks (NNs) with time delays is extensively investigated. We first initiate the fractional-order complex-valued memristor-based NNs with the Caputo fractional derivatives. Using the theory of fractional-order differential equations with discontinuous right-hand sides, Laplace transforms, Mittag-Leffler functions and generalized Gronwall inequality, some new sufficient conditions are derived to guarantee the finite-time stability of the considered fractional-order complex-valued memristor-based NNs. In addition, some sufficient conditions are also obtained for the asymptotical stability of fractional-order complex-valued memristor-based NNs. Finally, a numerical example is presented to demonstrate the effectiveness of our theoretical results.  相似文献   

9.
Singh  Jay Prakash  Roy  B. K. 《Nonlinear dynamics》2017,89(3):1845-1862
Nonlinear Dynamics - The paper reports the simplest 4-D dissipative autonomous chaotic system with line of equilibria and many unique properties. The dynamics of the new system contains a total of...  相似文献   

10.
11.
Nonlinear Dynamics - The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work,...  相似文献   

12.
In this paper, a novel adaptive fractional-order feedback controller is first developed by extending an adaptive integer-order feedback controller. Then a simple but practical method to synchronize almost all familiar fractional-order chaotic systems has been put forward. Through rigorous theoretical proof by means of the Lyapunov stability theorem and Barbalat lemma, sufficient conditions are derived to guarantee chaos synchronization. A wide range of fractional-order chaotic systems, including the commensurate system and incommensurate case, autonomous system, and nonautonomous case, is just the novelty of this technique. The feasibility and validity of presented scheme have been illustrated by numerical simulations of the fractional-order Chen system, fractional-order hyperchaotic Lü system, and fractional-order Duffing system.  相似文献   

13.
Compared to the integer-order chaotic MEMS resonator, the fractional-order system can better model its hereditary properties and exhibit complex dynamical behavior. Following the increasing attention to adaptive stabilization in controller design, this paper deals with the observer-based adaptive stabilization issue of the fractional-order chaotic MEMS resonator with uncertain function, parameter perturbation, and unmeasurable states under electrostatic excitation. To compensate the uncertainty, a Chebyshev neural network is applied to approximate the uncertain function while its weight is tuned by a parametric update law. A fractional-order state observer is then constructed to gain unmeasured feedback information and a tracking differentiator based on a super-twisting algorithm is employed to avoid repeated derivative in the framework of backstepping. Based on the Lyapunov stability criterion and the frequency-distributed model of the fractional integrator, it is proved that the adaptive stabilization scheme not only guarantees the boundedness of all signals, but also suppresses chaotic motion of the system. The effectiveness of the proposed scheme for the fractional-order chaotic MEMS resonator is illustrated through simulation studies.  相似文献   

14.
In this paper, we construct a novel four dimensional fractional-order chaotic system. Compared with all the proposed chaotic systems until now, the biggest difference and most attractive place is that there exists no equilibrium point in this system. Those rigorous approaches, i.e., Melnikov??s and Shilnikov??s methods, fail to mathematically prove the existence of chaos in this kind of system under some parameters. To reconcile this awkward situation, we resort to circuit simulation experiment to accomplish this task. Before this, we use improved version of the Adams?CBashforth?CMoulton numerical algorithm to calculate this fractional-order chaotic system and show that the proposed fractional-order system with the order as low as 3.28 exhibits a chaotic attractor. Then an electronic circuit is designed for order q=0.9, from which we can observe that chaotic attractor does exist in this fractional-order system. Furthermore, based on the final value theorem of the Laplace transformation, synchronization of two novel fractional-order chaotic systems with the help of one-way coupling method is realized for order q=0.9. An electronic circuit is designed for hardware implementation to synchronize two novel fractional-order chaotic systems for the same order. The results for numerical simulations and circuit experiments are in very good agreement with each other, thus proving that chaos exists indeed in the proposed fractional-order system and the one-way coupling synchronization method is very effective to this system.  相似文献   

15.
A new fractional-order chaotic system with absolute value term is introduced. Some dynamical behaviors are investigated and analyzed. Furthermore, synchronization of this system is achieved by utilizing the drive-response method and the feedback method. The suitable parameters for achieving synchronization are studied. Both the theoretical analysis and numerical simulations show the effectiveness of the two methods.  相似文献   

16.
In this paper, we focus on the synchronization between integer-order chaotic systems and a class of fractional-order chaotic system using the stability theory of fractional-order systems. A new fuzzy sliding mode method is proposed to accomplish this end for different initial conditions and number of dimensions. Furthermore, three examples are presented to illustrate the effectiveness of the proposed scheme, which are the synchronization between a fractional-order chaotic system and an integer-order Liu chaotic system, the synchronization between a fractional-order hyperchaotic system based on Chen??s system and an integer-order hyperchaotic system based upon the Lorenz system, and the synchronization between a fractional-order hyperchaotic system based on Chen??s system, and an integer-order Liu chaotic system. Finally, numerical results are presented and are in agreement with theoretical analysis.  相似文献   

17.
A practical synchronization approach is proposed for a class of fractional-order chaotic systems to realize perfect \(\delta \)-synchronization, and the nonlinear functions in the fractional-order chaotic systems are all polynomials. The \(\delta \)-synchronization scheme in this paper means that the origin in synchronization error system is stable. The reliability of \(\delta \)-synchronization has been confirmed on a class of fractional-order chaotic systems with detailed theoretical proof and discussion. Furthermore, the \(\delta \)-synchronization scheme for the fractional-order Lorenz chaotic system and the fractional-order Chua circuit is presented to demonstrate the effectiveness of the proposed method.  相似文献   

18.
Fan  Yingjie  Huang  Xia  Wang  Zhen  Li  Yuxia 《Nonlinear dynamics》2018,93(2):611-627
Nonlinear Dynamics - In this paper, a simplified memristor-based fractional-order neural network (MFNN) with discontinuous memductance function is proposed. It is essentially a switched system with...  相似文献   

19.
Dong  Kaifeng  Xu  Kun  Zhou  Youyou  Zuo  Chao  Wang  Leimin  Zhang  Chuanke  Jin  Fang  Song  Junlei  Mo  Wenqin  Hui  Yajuan 《Nonlinear dynamics》2022,109(3):2129-2141
Nonlinear Dynamics - A new type of weak signal detection system that combines the memristor and Van der pol-Duffing chaotic system has been proposed in this paper, and the dynamic characteristics...  相似文献   

20.
Based on the theory of stabilization of fractional-order LTI interval systems, a simple controller for stabilization of a class of fractional-order chaotic systems is proposed in this paper. We consider the structure of the chaotic systems as fractional-order LTI interval systems due to the limited amplitude of chaotic trajectories. We introduce a simple feedback controller for the interval system and then, based on a recently established theorem for stabilization of interval systems, we reach to a linear matrix inequality (LMI) problem. Solving the LMI yields an appropriate decoupling feedback control law which suffices to bring the chaotic trajectories to the origin. Several illustrative examples are given which show the effectiveness of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号