首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dias NC  Nawas MI  Poole CF 《The Analyst》2003,128(5):427-433
The solvation parameter model is used to identify suitable chromatographic models for estimating the octanol-water partition coefficient for neutral compounds of varied structure by reversed-phase liquid chromatography. The stationary phase Supelcosil LC-ABZ with methanol-water mobile phases affords a series of suitable correlation models for estimating the octanol-water partition coefficient (log KOW) under isocratic and gradient elution conditions. Isocratic separations with mobile phase compositions containing from about 25 to 40% (v/v) methanol provide the most accurate results for log KOW values in the range -0.1 to 4.0. Gradient separations programmed from 5 to 100% (v/v) methanol are suitable for faster separations of compounds with large log KOW values. The standard error in the estimate for the regression models of the predicted log KOW values against literature values are 0.135 log units for the 30% (v/v) methanol-water isocratic system and 0.263 log units for the methanol-water gradient system. Isocratic retention factors predicted from two gradient separations with gradient times of 15 and 45 min afford a poorer fit for the correlation models between log KOW and the estimated retention factors than that of either the above isocratic and gradient models. Plots of the retention factor (log k) as a function of mobile phase composition are generally non-linear. Values of log kw obtained by non-linear extrapolation to a volume fraction of 0% (v/v) methanol do not afford a useful model for estimating log KOW.  相似文献   

2.
Dutta D  Ramsey JM 《Lab on a chip》2011,11(18):3081-3088
Microchannels in microfluidic devices are frequently chemically modified to introduce specific functional elements or operational modalities. In this work, we describe a miniaturized hydraulic pump created by coating selective channels in a glass microfluidic manifold with a polyelectrolyte multilayer (PEM) that alters the surface charge of the substrate. Pressure-driven flow is generated due to a mismatch in the electroosmotic flow (EOF) rates induced upon the application of an electric field to a tee channel junction that has one arm coated with a positively charged PEM and the other arm left uncoated in its native state. In this design, the channels that generate the hydraulic pressure are interconnected via the third arm of the tee to a field-free analysis channel for performing pressure-driven separations. We have also shown that modifications in the cross-sectional area of the channels in the pumping unit can enhance the hydrodynamic flow through the separation section of the manifold. The integrated device has been demonstrated by separating Coumarin dyes in the field-free analysis channel using open-channel liquid chromatography under pressure-driven flow conditions.  相似文献   

3.
刘敏  李小林  别玮  王明林  冯骞 《色谱》2011,29(2):162-167
建立了测定调味品中15种工业合成染料的固相萃取-高效液相色谱法(SPE-HPLC)。样品经甲醇-水(1:1, v/v)超声提取、SPE柱净化后用HPLC进行分析,流动相为10 mmol/L乙酸铵溶液(含1%乙酸)和乙腈。实验结果表明15种工业合成染料的分离效果良好,回收率为84.6%~114.2%,相对标准偏差为0.9%~10.3%;检出限为0.05~0.18 mg/kg。该方法操作简单,结果准确,重现性好,可用于同时测定调味品中非法添加的15种工业合成染料。  相似文献   

4.
Lu Y  Wang H  Song P  Liu S 《色谱》2011,29(11):1122-1127
建立了毛细管电泳-场强放大样品堆积测定染发剂中4,4′-二氨基二苯甲烷、苯胺、邻甲氧基苯胺、对氨基苯甲醚、3,4-二甲基苯胺、间氨基苯酚、1-萘胺7种苯胺类物质的分析方法。在优化的缓冲溶液体系(0.15 mol/L NaH2PO4,0.015 mol/L 三乙醇胺, pH 2.3)下7种分析物在6.5 min内实现基线分离。考察了样品中添加的磷酸浓度和乙腈浓度、水柱长度、电动进样时间与电压对场强放大富集效率及重现性的影响。最佳的富集条件为: 水柱注入3.45 kPa(0.5 psi)×6 s,样品中添加40%(v/v)乙腈和0.6×10~3mol/L磷酸,进样电压与进样时间为10 kV×10 s。线性范围为3~1000 μg/L(R2>0.996),检出限为0.26~2.75 μg/L,将已有方法的检测灵敏度提高了1~3个数量级。在2种市售黑色染发剂中均检测到间氨基苯酚,含量分别为7.32 mg/g和1.34 mg/g。平均加标回收率为74%~108%。该方法灵敏度高、快速、重现性好、成本低,可供多种样品基质中痕量苯胺类污染物及其他阳离子物质的测定借鉴使用。  相似文献   

5.
We developed an immune microanalysis system incorporating chemiluminescence detection, where the peroxyoxalate chemiluminescence (CL) detection using bis[4-nitro-2-(3,6,9-trioxadecyloxycarbonyl)phenyl]oxalate (TDPO)-hydrogen peroxide (H2O2)-fluorescein isothiocianate (FITC) reaction was newly adopted. The analysis system performed the following three processes on a microchip: immune reaction for high selectivity, electrophoresis for formation and transportation of the sample plug, and CL detection. The immune reaction was carried out using an antibody-immobilized glass bead. The glass bead was placed in one of the reservoirs in the microchip along with antigen (analyte) and a known amount of FITC-labeled antigen to set up a competitive immune reaction. The reactant after the immune reaction was fed electrophoretically into the intersection, resulting in a sample plug. The sample plug was then moved into another reservoir containing TDPO-H2O2 acetonitrile solution. At this point, CL detection was performed. The system described here was capable of determining human serum albumin or immunosuppressive acidic protein as a cancer marker in human serum.  相似文献   

6.
Poly(dimethylsiloxane) (PDMS) membrane valves were utilized for diaphragm pumping on a PDMS-glass hybrid microdevice in order to couple infrared-mediated DNA amplification with electrophoretic separation of the products in a single device. Specific amplification products created during non-contact, infrared (IR) mediated polymerase chain reaction (PCR) were injected via chip-based diaphragm pumping into an electrophoretic separation channel. Channel dimensions were designed for injection plug shaping via preferential flow paths, which aided in minimizing the plug widths. Unbiased injection of sample could be achieved in as little as 190 ms, decreasing the time required with electrokinetic injection by two orders of magnitude. Additionally, sample stacking was promoted using laminar or biased-laminar loading to co-inject either water or low ionic strength DNA marker solution along with the PCR-amplified sample. Complete baseline resolution (Res = 2.11) of the 80- and 102-bp fragments of pUC-18 DNA marker solution was achieved, with partially resolved 257- and 267-bp fragments (Res = 0.56), in a separation channel having an effective length of only 3.0 cm. This resolution was deemed adequate for many PCR amplicon separations, with the added advantage of short separation time-typically complete in <120 s. Decreasing the amount of glass surrounding the PCR chamber reduced the DNA amplification time, yielding a further enhancement in analysis speed, with heating and cooling rates as high as 13.4 and -6.4 degrees C s(-1), respectively. With the time requirements greatly reduced for each step, it was possible to seamlessly couple IR-mediated amplification, sample injection, and separation/detection of a 278-bp fragment from the invA gene of <1000 starting copies of Salmonella typhimurium DNA in approximately 12 min on a single device, representing the fastest PCR-ME integration achieved to date.  相似文献   

7.
With polyamide( PA)as an efficient sorbent for solid phase extraction( SPE)of Sudan dyes II,III and Red 7B from saffron and urine,their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water( 1:9,v/v,pH 7)as the washing solvent and 3 mL tetrahydrofu-ran for elution. Good clean-up and high( above 90%)recoveries were observed for all the analytes. The opti-mized mobile phase composition for HPLC analysis of these compounds was methanol-water( 70:30,v/v). The SPE parameters,such as the maximum loading capacity and breakthrough volume,were also determined for each analyte. The limits of detection( LODs),limits of quantification( LOQs),linear ranges and recoveries for the analytes were 4. 6-6. 6 μg/L,13. 0-19. 8 μg/L,13. 0-5 000 μg/L( r2> 0. 99)and 92. 5% -113. 4%,respec-tively. The precisions( RSDs)of the overall analytical procedure,estimated by five replicate measurements for Sudan II,III and Red 7B in saffron and urine samples were 2. 3%,1. 8% and 3. 6%,respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine sam-ples with HPLC coupled with UV detection.  相似文献   

8.
The relationship, delta values, between the two rigorous pH scales, S(S)pH (pH measured in a methanol-water mixture and referred to the same mixture as standard state) and S(W)pH (pH measured in a methanol-water mixture but referred to water as standard state), in several methanol-water mixtures was determined (delta = S(W)pH-S(S)pH). Delta values were measured using a combined glass electrode and a wide set of buffer solutions. The results are consistent with those obtained with the hydrogen electrode. This confirms the aptness of the glass electrode to achieve rigorous pH measurements in methanol-water mixtures. An equation that relates delta and composition of methanol-water mixtures, and allows delta computation at any composition by interpolation, is proposed. Therefore, S(S)pH can be achieved from the experimental S(W)pH value and delta at any mobile phase composition. S(S)pH (or S(W)pH) values are related to the chromatographic retention of ionizable compounds through their thermodynamic acid-base constants in the methanol-water mixture used as mobile phase. These relationships were tested for the retention variation of several acids and bases with the pH of the mobile phase. Therefore, the optimization of the mobile phase acidity for any analyte can be easily reached avoiding the disturbances observed when W(W)pH is used.  相似文献   

9.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

10.
Lepont C  Gunatillaka AD  Poole CF 《The Analyst》2001,126(8):1318-1325
The solvation parameter model is used to study the retention mechanism of neutral organic compounds on porous graphitic carbon with methanol-water mobile phases containing from 0-100% (v/v) methanol. The dominant contribution to retention is the cavity formation-dispersion interaction term, composed of favorable interactions in the mobile phase (hydrophobic effect) and additional contributions from adsorption on the graphite surface. Electron lone pair and dipole-type interactions in the adsorbed state result in increased retention. Hydrogen-bonding interactions are more favorable in the mobile phase resulting in lower retention. The changes in the system constants of the solvation parameter model for cavity formation-dispersion interactions and hydrogen-bond interactions are linearly related to the volume fraction of water in the mobile phase. The system constants for electron lone pair interactions and dipole-type interactions are non-linear and go through a maximum and minimum value, respectively, at a specific mobile phase composition. The solvation parameter model poorly predicts the retention properties of angular molecules. This is probably due to the failure of the characteristic volume to correctly model the contact surface area for the interaction of angular molecules with the planar graphite surface. General factors affecting the quality of model fits for adsorbents are discussed.  相似文献   

11.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

12.
Non-equilibrium molecular dynamics simulations of boundary-driven sheared Lennard-Jones liquids at variable pressure up to 5 GPa (for argon) reveal a rich out-of-equilibrium phase behavior with a strong degree of shear localization. At the lowest apparent shear rate considered (wall speed ~1 m s(-1)) the confined region is an homogeneously sheared solid (S) with no slip at the walls. This transforms at higher shear rates to a non-flowing plug with slip at the walls, referred to as the plug slip (PS) state. At higher shear rate a central localized (CL) state formed in which the shear gradient was localized in the center of the film, with the rest of the confined sample in a crystalline state commensurate with the wall lattice. The central zone liquidlike region increased in width with shear rate. A continuous rounded temperature profile across the whole system reflects strong dynamical coupling between the wall and confined region. The temperature rise in the confined film is consistent with the Brinkman number. The transition from the PS to CL states typically occurred at a wall speed near where the shear stress approached a critical value of ~3% of the shear modulus, and also near the peak in the traction coefficient, μ. The peak traction coefficient values computed, ~0.12-0.14 at 1000 MPa agree with those found for traction fluids and occur when the confined liquid is in the PS and CL states. At low wall speeds slip can occur at one wall and stick at the other. Poorly wetting liquids manifest long-lived asymmetries in the confined liquid properties across the system, and a shift in solid-liquid phase co-existence to higher shear rates. A non-equilibrium phase diagram based on these results is proposed. The good agreement of the tribological response of the Lennard-Jones fluid with that of more complicated molecular systems suggests that a corresponding states scaling of the tribological behavior could apply.  相似文献   

13.
Retention for a varied group of compounds on an immobilized artificial membrane column (IAM PC DD2) with a methanol-water mobile phase is shown to fit a second-order model for the retention factor (log k) as a function of the volume fraction of organic solvent. The numerical value of the intercept obtained by linear extrapolation to zero organic solvent (log k(w)) is shown to depend on the range of mobile phase composition used for the extrapolation. Each series of intercepts so obtained represents a different hypothetical distribution system as identified by the system constants of the solvation parameter model. Although a linear model is a poor fit for isocratic retention data, the linear solvent strength gradient model provides a reasonable estimate of isocratic retention factor values that are (slightly) larger than experimental values, but provide the same chemical information for the system. These preliminary results suggest that gradient elution may prove to be a rapid and useful method for creating system maps for column characterization and method development. In this work a system map is provided for methanol-water compositions from 0 to 60% (v/v) methanol and additional system constants for acetonitrile-water compositions containing 20 and 30% (v/v) acetonitrile. It is shown that the main factors contributing to retention on the IAM PC DD2 column are favorable cavity formation and dispersion interactions, electron lone pair interactions and the hydrogen-bond basicity of the sorbent. The latter feature more than any other distinguishes the IAM column from conventional chemically bonded phases. Interactions of a dipole-type (weakly) and inability to compete with the mobile phase as a hydrogen-bond acid reduce retention. A comparison of system constant ratios is used to demonstrate that the retention properties of the IAM column are not easily duplicated by conventional chemically bonded phases. The retention characteristics of the IAM column, however, are strongly correlated with the retention properties of pseudostationary phases used for micellar electrokinetic chromatography, which provide a suitable alternative to IAM columns for physical property estimations. By the same comparative method it is shown that retention on the IAM column possesses some similarity to biomembrane absorption processes, allowing suitable correlation models to be developed for the estimation of certain biopartitioning properties.  相似文献   

14.
胡侠  肖光  潘炜  毛希琴  李鹏 《色谱》2010,28(6):590-595
建立了辣椒粉及辣椒油中7种罗丹明染料的高效液相色谱-串联质谱(HPLC-MS/MS)测定方法。样品经正己烷或甲醇-水(体积比为1:1)溶液提取后,经固相萃取(SPE)柱净化,采用SB-C18柱分离,以乙腈和水(含体积分数为0.1%的甲酸)为流动相进行梯度洗脱,采用正离子模式质谱检测,在多反应监测(MRM)模式下进行定性定量测定。7种罗丹明类染料在0.0005~1.0 mg/L质量浓度范围内线性关系良好,相关系数(r2)均大于0.997;方法的检出限分别为0.21~51 μg/kg(辣椒粉)和0.19~25 μg/kg(辣椒油);方法的回收率为85.0%~106.0%,日内及日间相对标准偏差均小于20%。该方法简单、灵敏度高、分析时间短,适用于辣椒粉和辣椒油中7种罗丹明染料的同时测定。  相似文献   

15.
Aqueous sulfuric acid can be used as the mobile phase in cation ion chromatography to separate the three biogenic amines, putrescine, cadaverine, and histamine, from fish. Various concentrations of aqueous sulfuric acid were investigated to optimize the separation of these three biogenic amines. Aqueous sulfuric acid (5.0 mM) was found to be optimum for the separation and was used to determine the three biogenic amines in fish. The LOQ, defined as the lowest level of the standard calibration curve, was 0.055 ppm (equivalent to 0.55 microg/g sample) for putrescine, 0.05 ppm (equivalent to 0.5 microg/g sample) for cadaverine, and 1.0 ppm (equivalent to 10 microg/g sample) for histamine. From statistical analysis of the LOQ, the method detection limit was 0.003 ppm for putrescine, 0.009 ppm for cadaverine, and 0.16 ppm for histamine. For sample preparation, the fish was composited, homogenized in methanol-water (75 + 25, v/v), incubated for 15 min at 60 degrees C, and centrifuged. The sample solution was micron-filtered before injection. The mobile phase flow rate was 0.8 mL/min under isocratic conditions at room temperature (15-25 degrees C). The three biogenic amines were separated in the order of increasing retention time, i.e., putrescine, cadaverine, and histamine, within 30 min. The chromatograms showed complete peak separation of the three amines regardless of the difference in fish matrixes.  相似文献   

16.
A method was developed for the determination of 3'-azido-3'-deoxythymidine (AZT) in plasma. The method is based on the trace enrichment of AZT on a pre-column packed with a silver-loaded thiol stationary phase at pH 11.6. On-line desorption to the reversed-phase liquid chromatographic system is performed by injecting a plug of 50 microliters of 1 M perchloric acid on the silver (I)-thiol pre-column. Two different sample pretreatment methods - protein precipitation with perchloric acid and on-line clean-up via a polymeric PRP-1 pre-column - were applied for the determination of AZT in human plasma. The latter method allows the direct injection of plasma samples into the analytical system and can therefore easily be automated. With both methods detection limits in the order of 10(-8) M AZT were obtained after preconcentration of 1.0 ml of plasma, using UV detection at 267 nm.  相似文献   

17.
A reversed-phase ion-pair liquid chromatography-spectrophotometric detection system for the separation and simultaneous determination of molybdenum, chromium and vanadium is described. The chelates of the metal ions with 4-(2-pyridylazo)resorcinol are separated on a Zorbax CN column with 1 x 10(-3)M tetrabutylammonium iodide and 0.01M KH(2)PO(4)-Na(2)HPO(4) buffer (pH 7.50) in 30:70 v v methanol-water mixture as the mobile phase, at a flow-rate of 1.0 ml min . The chelates are detected spectrophotometrically at 540 nm.  相似文献   

18.
Qiping L  Huashan Z  Jieke C 《Talanta》1991,38(6):669-672
The first use of 4-(2-thiazolylazo)resorcinol (TAR) as a chelating reagent in the reversed-phase HPLC separation and determination of Os, Rh and Ru is reported. A precolumn derivatization method is used, followed by separation on an octadecyl-bonded silica stationary phase with a methanol-water mobile phase. The coloured complexes of Os, Rh, and Ru are completely separated within 8 min with a 60:40 v/v methanol-water mixture (pH 4.0, tetrabutylammonium as counter-ion). The detection limits for Rh, Ru and Os at 550 nm are 5, 6 and 17 ng/ml respectively. Recoveries of 94-102% have been obtained for these trace noble metals in analysis of anode slime.  相似文献   

19.
Identification and quantitation of trace amounts of trenbolone in bovine tissue by capillary gas chromatography-mass spectrometry-selected-ion monitoring (GC-MS-SIM) has been developed. Three-phase liquid-liquid extraction using a mixture of water-acetonitrile-dichloromethane-hexane was utilized for the sample extraction from tissue. Target compounds were extracted from the tissue into the acetonitrile layer. The residue from this extraction was then subjected to solid-phase extraction by C18 and silica gel disposable cartridges using methanol-water and benzene-acetone as eluents. To overcome extensive matrix interferences, preparative reversed-phase high-performance liquid chromatographic separation was used with an octadecyl-bonded column using methanol-water as mobile phase for sample clean-up prior to GC-MS analysis. A structural analogue of trenbolone, 19-nortestosterone, was chosen as the internal standard for quantitation by GC-MS. The sample was co-injected with N,O-bis (trimethylsilyl) trifluoroacetamide-1-(trimethylsilyl) imidazole (95:5, v/v) for flash heater derivation. Identification and quantitation were simultaneously carried out by SIM of characteristic ions of the trimethylsilyl derivatives of trenbolone and 19-nortestosterone. The limit of detection for trenbolone and epitrenbolone was 0.5 ppb in muscle and liver tissue. A comparison of sensitivity and specificity between GC-MS under electron ionization in addition to positive- and negative-ion chemical ionization conditions using methane reagent gas is also discussed.  相似文献   

20.
A very simple and fast method for the fabrication of poly(dimethylsiloxane) (PDMS) microfluidic devices is introduced. By using a photocopying machine to make a master on transparency instead of using lithographic equipment and photoresist, the fabrication process is greatly simplified and speeded up, requiring less than 1.5 h from design to device. Through SEM characterization, any micro-channel network with a width greater than 50 microm and a depth in the range of 8-14 microm can be made by this method. After sealing to a Pyrex glass plate with micromachined platinum electrodes, a microfluidic device was made and the device was tested in FIA mode with on-chip conductometric detection without using either high voltage or other pumping methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号