首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional kinematic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder and air traffic control radar. This leads to a least-square problem, which is solved analytically for both the continuous formulation and the discrete formulation. Key to the precision of the identification process is the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, if the integration time is too long, the hypothesis of two-dimensional motion (flight trajectory nearly contained in a vertical plane) breaks down. Application of the 2D-kinematic approach to the case of Flight Delta 191 shows that stable identification takes place for integration times in the range τ = 120 to 180 sec before impact. The results of the 2D-kinematic approach are close to those of the 3D-kinematic approach (Ref. 1), particularly in terms of the inertial velocity components at impact (within 1 fps) and the maximum wind velocity differences (within 2 fps). The 2D-kinematic approach is applicable to the analysis of wind-shear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft.  相似文献   

2.
Standard wind identification techniques employed in the analysis of aircraft accidents are post-facto techniques; they are processed after the event has taken place and are based on the complete time histories of the DFDR/ATCR data along the entire trajectory. By contrast, real-time wind identification techniques are processed while the event is taking place; they are based solely on the knowledge of the preceding time histories of the DFDR/ATCR data.In this paper, a real-time wind identification technique is developed. First, a 3D-kinematic approach is employed in connection with the DFDR/ATCR data covering the time interval preceding the present time instant. The aircraft position, inertial velocity, and accelerometer bias are determined by matching the flight trajectory computed from the DFDR data with the flight trajectory available from the ATCR data. This leads to a least-square problem, which is solved analytically every seconds, with / small.With the inertial velocity and accelerometer bias known, an extrapolation process takes place so as to predict the inertial velocity profile over the subsequent -subinterval. At the end of this subinterval, the extrapolated inertial velocity and the newly identified inertial velocity are statistically reconciled and smoothed. Then, the process of identification, extrapolation, reconciliation, and smoothing is repeated. Subsequently, the wind is computed as the difference between the inertial velocity and the airspeed, which is available from the DFDR data. With the wind identified, windshear detection can take place (Ref. 1).As an example, the real-time wind identification technique is applied to Flight Delta 191, which crashed at Dallas-Fort Worth International Airport on August 2, 1985. The numerical results show that the wind obtained via real-time identification is qualitatively and quantitatively close to the wind obtained via standard identification. This being the case, it is felt that real-time wind identification can be useful in windhsear detection and guidance, above all if the shear/downdraft factor signal is replaced by the wind difference signal (Ref. 1).This paper and its companion (Ref. 1) are based on Refs. 2–4.This research was supported by the Aviation Research and Education Foundation and by Texas Advanced Technology Program, Grant No. TATP-003604020.  相似文献   

3.
This paper deals with the identification of the wind profile along a flight trajectory by means of a three-dimensional kinematic approach. The approach is then applied to a recent aircraft accident, that of Flight Delta 191, which took place at Dallas-Fort Worth International Airport on August 2, 1985.In the 3D-kinematic approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder (DFDR) and air traffic control radar (ATCR). This leads to a least-square problem, which is solved analytically.Key to the precision of the identified wind profile is the correct identification of the accelerometer biases and the impact velocity components. In turn, this depends on the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, stable identification takes place if the integration time is properly chosen.Application of the method developed to the case of Flight Delta 191 shows that the identification problem has a stable solution if the integration time is larger than 180 sec. Numerical computation shows that, for Flight Delta 191, the maximum wind velocity difference determined with the 3D-kinematic approach was W x =124 fps in the longitudinal direction, W y =66 fps in the lateral direction, and W h =71 fps in the vertical direction.Notations a b measured acceleration, ft/sec2 - a bx ,a by ,a bz measured acceleration components, body axes system, ft/sec2 - b accelerometer bias, ft/sec2 - b x ,b y ,b z accelerometer bias components, body axes system, ft/sec2 - g acceleration of gravity, ft/sec2 - h altitude above sea level, positive upward, ft - m mass, lb sec2/ft - p air pressure, lb/ft2 - R gas constant for air, ft2/sec2 °R - S reference wing area, ft2 - t running time, sec - T air temperature, °R - V a airspeed, ft/sec - V ax ,V ay ,V az airspeed components, Earth axes system, ft/sec - V e inertial velocity, ft/sec - V ex ,V ey ,V ez inertial velocity components, Earth axes system, ft/sec - V ia indicated airspeed, ft/sec - W mg=weight, lb - W wind velocity, ft/sec - W x ,W y ,W z wind velocity components, Earth axes system, ft/sec - x, y, z Cartesian coordinates, Earth axes system, ft - x longitudinal coordinate, positive northward, Earth axes system, ft - y lateral coordinate, positive eastward, Earth axes system, ft - z vertical coordinate, positive downward, Earth axes system, ft - angle of attack, rad - path inclination, rad - pitch angle, rad - bank angle, rad - air density, lb sec2/ft4 - sideslip angle, rad - integration time, sec - roll angle, rad This research was supported by Air Line Pilots Association (ALPA), United States Aviation Underwriters (USAU), and Texas Advanced Technology Program, Grant No. TATP-003604020. This paper is based on Ref. 1.  相似文献   

4.
The problem of the feedback control of an aircraft landing in the presence of windshear is considered. The landing process is investigated up to the time when the runway threshold is reached. It is assumed that the bounds on the wind velocity deviations from some nominal values are known, while information about the windshear location and wind velocity distribution in the windshear zone is absent. The methods of differential game theory are employed for the control synthesis.The complete system of aircraft dynamic equations is linearized with respect to the nominal motion. The resulting linear system is decomposed into subsystems describing the vertical (longitudinal) motion and lateral motion. For each subsystem, an, auxiliary antagonistic differential game with fixed terminal time and convex payoff function depending on two components of the state vector is formulated. For the longitudinal motion, these components are the vertical deviation of the aircraft from the glide path and its time derivative; for the lateral motion, these components are the lateral deviation and its time derivative. The first player (pilot) chooses the control variables so as to minimize the payoff function; the interest of the second player (nature) in choosing the wind disturbance is just opposite.The linear differential games are solved on a digital computer with the help of corresponding numerical methods. In particular, the optimal (minimax) strategy is obtained for the first player. The optimal control is specified by means of switch surfaces having a simple structure. The minimax control designed via the auxiliary differential game problems is employed in connection with the complete nonlinear system of dynamical equations.The aircraft flight through the wind downburst zone is simulated, and three different downburst models are used. The aircraft trajectories obtained via the minimax control are essentially better than those obtained by traditional autopilot methods.  相似文献   

5.
This paper is concerned with optimal flight trajectories in the presence of windshear. The abort landing problem is considered with reference to flight in a vertical plane. It is assumed that, upon sensing that the airplane is in a windshear, the pilot increases the power setting at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.The performance index being minimized is the peak value of the altitude drop. The resulting optimization problem is a minimax problem or Chebyshev problem of optimal control, which can be converted into a Bolza problem through suitable transformations. The Bolza problem is then solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Numerical results are obtained for several combinations of windshear intensities, initial altitudes, and power setting rates.For strong-to-severe windshears, the following conclusions are reached: (i) the optimal trajectory includes three branches: a descending flight branch, followed by a nearly horizontal flight branch, followed by an ascending flight branch after the aircraft has passed through the shear region; (ii) along an optimal trajectory, the point of minimum velocity is reached at about the time when the shear ends; (iii) the peak altitude drop depends on the windshear intensity, the initial altitude, and the power setting rate; it increases as the windshear intensity increases and the initial altitude increases; and it decreases as the power setting rate increases; (iv) the peak altitude drop of the optimal abort landing trajectory is less than the peak altitude drop of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory; (v) the survival capability of the optimal abort landing trajectory in a severe windshear is superior to that of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory.Portions of this paper were presented at the IFAC 10th World Congress, Munich, Germany, July 27–31, 1987 (Paper No. IFAC-87-9221).This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA). Discussions with Dr. R. L. Bowles (NASA-LRC) and Mr. C. R. Higgins (BCAC) are acknowledged.  相似文献   

6.
This paper is concerned with the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered. It is assumed that the power setting is held at the maximum value and that the aircraft is controlled through the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the absolute path inclination and a reference value, assumed constant. Two types of optimal trajectories are studied: type 1 is concerned with gamma recovery (recovery of the initial value of the relative path inclination); and type 2 is concerned with quasisteady flight recovery (recovery of the initial values of the relative velocity, the relative path inclination, and the relative angle of attack). The numerical results show that the type 1 trajectory and the type 2 trajectory are nearly the same in the shear portion, while they diverge to a considerable degree in the aftershear portion of the optimal trajectory.Next, trajectory guidance is considered. A guidance scheme is developed so as to achieve near-optimum quasi-steady flight recovery in a windshear. The guidance scheme for quasi-steady flight recovery includes three parts in sequence. The first part refers to the shear portion of the trajectory and is based on the result that this portion of the trajectory depends only mildly on the boundary conditions; therefore, any of the guidance schemes already developed for type 1 trajectories can be employed (for instance, variable gamma guidance). The second part (constant gamma guidance) refers to the initial aftershear portion of the trajectory and is designed to achieve almost velocity recovery. The third part (constant rate of climb guidance) refers to the final aftershear portion of the trajectory and is designed to achieve almost complete restoration of the initial quasi-steady state.While the shear guidance and the initial aftershear guidance employ constant gain coefficients, the final aftershear guidance employs a variable gain coefficient. This is done in order to obtain accuracy and prompt response, while avoiding oscillations and overshoots. The numerical results show that the guidance scheme for quasi-steady flight recovery yields a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, ensures the restoration of the initial quasi-steady state, and has good stability properties.This paper is based on Refs. 1 and 2.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, and by Boeing Commercial Aircraft Company. The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, for helpful discussions.  相似文献   

7.
This paper is concerned with guidance strategies and piloting techniques which ensure near-optimum performance and maximum survival capability in a severe windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is assumed.First, six particular guidance schemes are considered, namely: constant alpha guidance; maximum alpha guidance; constant velocity guidance; constant absolute path inclination guidance; constant rate of climb guidance; and constant pitch guidance. Among these, it is concluded that the best one is the constant pitch guidance.Next, in an effort to improve over the constant pitch guidance, three additional trajectories are considered: the optimal trajectory, which minimizes the maximum deviation of the absolute path inclination from a reference value, while employing global information on the wind flow field; the gamma guidance trajectory, which is based on the absolute path inclination and which approximates the behavior of the optimal trajectory, while employing local information on the windshear and the downdraft; and the simplified gamma guidance trajectory, which is the limiting case of the gamma guidance trajectory in a severe windshear and which does not require precise information on the windshear and the downdraft.The essence of the simplified gamma guidance trajectory is that it yields a quick transition to horizontal flight. Comparative numerical experiments show that the survival capability of the simplified gamma guidance trajectory is superior to that of the constant pitch trajectory and is close to that of the optimal trajectory.Next, with reference to the simplified gamma guidance trajectory, the effect of the feedback gain coefficient is studied. It is shown that larger values of the gain coefficient improve the survival capability in a severe windshear; however, excessive values of the gain coefficient are undesirable, because they result in larger altitude oscillations and lower average altitude.Finally, with reference to the simplified gamma guidance trajectory, the effect of time delays is studied, more specifically, the time delay 1 in reacting to windshear onset and the time delay 2 in reacting to windshear termination. While time delay 2 has little effect on survival capability, time delay 1 appears to be critical in the following sense: smaller values of 1 correspond to better survival capability in a severe windshear, while larger values of 1 are associated with a worsening of the survival capability in a severe windshear.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, and by Boeing Commercial Airplane Company.  相似文献   

8.
Aircraft Take-Off in Windshear: A Viability Approach   总被引:1,自引:0,他引:1  
This paper is devoted to the analysis of aircraft dynamics during tage-off in the presence of windshear. We formulate the take-off problem as a differential game against Nature. Here, the first player is the relative angle of attack of the aircraft (considered as the control variable) and the second player is the disturbance caused by a windshear. We impose state constraints on the state variables of the game, which represents aircraft safety constraints (minimum altitude, given altitude rate). By using viability theory, we address the question of existence of an open loop control assuring a viable trajectory (i.e. satisfying the state constraints) no matter the disturbance is, i.e. for all admissible disturbances causeed by the windshear. Through numerical simulations of the viability kernel algorithm, we demonstrate the capabilities of this approach for determining safe flight domains of an aircraft during take-off within windshear.  相似文献   

9.
This paper is concerned with the optimal transition and the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The abort landing problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered.It is assumed that a transition from descending flight to ascending flight is desired; that the initial state corresponds to quasi-steady flight with absolute path inclination of –3.0 deg; and that the final path inclination corresponds to quasi-steady steepest climb. Also, it is assumed that, as soon as the shear is detected, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the instantaneous altitude and a reference value, assumed constant. By suitable transformations, the Chebyshev problem is converted into a Bolza problem. Then, the Bolza problem is solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems.Two types of optimal trajectories are studied, depending on the conditions desired at the final point. Type 1 is concerned with gamma recovery (recovery of the value of the relative path inclination corresponding to quasi-steady steepest climb). Type 2 is concerned with quasi-steady flight recovery (recovery of the values of the relative path inclination, the relative velocity, and the relative angle of attack corresponding to quasi-steady steepest climb). Both the Type 1 trajectory and the Type 2 trajectory include three branches: descending flight, nearly horizontal flight, and ascending flight. Also, for both the Type 1 trajectory and the Type 2 trajectory, descending flight takes place in the shear portion of the trajectory; horizontal flight takes place partly in the shear portion and partly in the aftershear portion of the trajectory; and ascending flight takes place in the aftershear portion of the trajectory. While the Type 1 trajectory and the Type 2 trajectory are nearly the same in the shear portion, they diverge to a considerable degree in the aftershear portion of the trajectory.Next, trajectory guidance is considered. Two guidance schemes are developed so as to achieve near-optimum transition from quasi-steady descending flight to quasi-steady ascending flight: acceleration guidance (based on the relative acceleration) and gamma guidance (based on the absolute path inclination).The guidance schemes for quasi-steady flight recovery in abort landing include two parts in sequence: shear guidance and aftershear guidance. The shear guidance is based on the result that the shear portion of the trajectory depends only mildly on the boundary conditions. Therefore, any of the guidance schemes already developed for Type 1 trajectories can be employed for Type 2 trajectories (descent guidance followed by recovery guidance). The aftershear guidance is based on the result that the aftershear portion of the trajectory depends strongly on the boundary conditions; therefore, the guidance schemes developed for Type 1 trajectories cannot be employed for Type 2 trajectories. For Type 2 trajectories, the aftershear guidance includes level flight guidance followed by ascent guidance. The level flight guidance is designed to achieve almost complete velocity recovery; the ascent guidance is designed to achieve the desired final quasi-steady state.The numerical results show that the guidance schemes for quasi-steady flight recovery yield a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, allows the aircraft to achieve the final quasi-steady state, and has good stability properties.This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company, and by Air Line Pilots Association.The authors are indebted to Dr. R. L. Bowles (NASA-LRC) and Dr. G. R. Hennig (BCAC) for helpful discussions.  相似文献   

10.
This paper is concerned with optimal flight trajectories in the presence of windshear. The penetration landing problem is considered with reference to flight in a vertical plane, governed by either one control (the angle of attack, if the power setting is predetermined) or two controls (the angle of attack and the power setting). Inequality constraints are imposed on the angle of attack, the power setting, and their time derivatives.The performance index being minimized measures the deviation of the flight trajectory from a nominal trajectory. In turn, the nominal trajectory includes two parts: the approach part, in which the slope is constant; and the flare part, in which the slope is a linear function of the horizontal distance. In the optimization process, the time is free; the absolute path inclination at touchdown is specified; the touchdown velocity is subject to upper and lower bounds; and the touchdown distance is subject to upper and lower bounds.Three power setting schemes are investigated: (S1) maximum power setting; (S2) constant power setting; and (S3) control power setting. In Scheme (S1), it is assumed that, immediately after the windshear onset, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant; in this scheme, the only control is the angle of attack. In Scheme (S2), it is assumed that the power setting is held at a constant value, equal to the prewindshear value; in this scheme, the only control is the angle of attack. In Scheme (S3), the power setting is regarded as a control, just as the angle of attack.Under the above conditions, the optimal control problem is solved by means of the primal sequential gradient-restoration algorithm (PSGRA). Numerical results are obtained for several combinations of windshear intensities and initial altitudes. The main conclusions are given below with reference to strong-to-severe windshears.In Scheme (S1), the touchdown requirements can be satisfied for relatively low initial altitudes, while they cannot be satisfied for relatively high initial altitudes; the major inconvenient is excess of velocity at touchdown. In Scheme (S2), the touchdown requirements cannot be satisfied, regardless of the initial altitude; the major inconvenient is defect of horizontal distance at touchdown.In Scheme (S3), the touchdown requirements can be satisfied, and the optimal trajectories exhibit the following characteristics: (i) the angle of attack has an initial decrease, which is followed by a gradual, sustained increase; the largest value of the angle of attack is attained near the end of the shear; in the aftershear region, the angle of attack decreases gradually; (ii) initially, the power setting increases rapidly until maximum power setting is reached; then, maximum power setting is maintained in the shear region; in the aftershear region, the power setting decreases gradually; (iii) the relative velocity decreases in the shear region and increases in the aftershear region; the point of minimum velocity occurs at the end of the shear; and (iv) depending on the windshear intensity and the initial altitude, the deviations of the flight trajectory from the nominal trajectory can be considerable in the shear region; however, these deviations become small in the aftershear region, and the optimal flight trajectory recovers the nominal trajectory.A comparison is shown between the optimal trajectories of Scheme (S3) and the trajectories arising from alternative guidance schemes, such as fixed controls (fixed angle of attack, coupled with fixed power setting) and autoland (angle of attack controlled via path inclination signals, coupled with power setting controlled via velocity signals). The superiority of the optimal trajectories of Scheme (S3) is shown in terms of the ability to meet the path inclination, velocity, and distance requirements at touchdown. Therefore, it is felt that guidance schemes based on the properties of the optimal trajectories of Scheme (S3) should prove to be superior to alternative guidance schemes, such as the fixed control guidance scheme and the autoland guidance scheme.Portions of this paper were presented at the AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, January 11–14, 1988 (Paper No. AIAA-88-0580).This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA).The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, and to Dr. G. R. Hennig, Boeing Commercial Airplane Company, for helpful discussions.  相似文献   

11.
The design of the control of an aircraft encountering windshear after takeoff is treated as a problem of stabilizing the climb rate about a desired value of the climb rate. The resulting controller is a feedback one utilizing only climb rate information. Its robustness vis-a-vis windshear structure and intensity is illustrated via simulations employing four different windshear models.Notations ARL aircraft reference line - D drag force, lb - g gravitational force per unit mass=const, ft sec–2 - h vertical coordinate of aircraft center of mass (altitude), ft - L lift force, lb - m aircraft mass=const, lb ft–1 sec2 - O mass center of aircraft - S reference surface, ft2 - t time, sec - T thrust force, lb - V aircraft speed relative to wind-based reference frame, ft sec–1 - V e aircraft speed relative to ground, ft sec–1 - W x horizontal component of wind velocity, ft sec–1 - W h vertical component of wind velocity, ft sec–1 - x horizontal coordinate of aircraft center of mass, ft - relative angle of attack, rad - relative path inclination, rad - e path inclination, rad - thrust inclination, rad - air density=const, lb ft2 sec2 Dot denotes time derivative.  相似文献   

12.
The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transforming this minimax problem into an optimal control problem of standard form, a state constraint has to be taken into account which is of order three. Moreover, two additional constraints, a first-order state constraint and a control variable constraint, are imposed upon the model. Since the only control variable appears linearly, the Hamiltonian is not regular. Thus, well-known existence theorems about the occurrence of boundary arcs and boundary points cannot be applied. Numerically, this optimal control problem is solved by means of the multiple shooting method in connection with an appropriate homotopy strategy. The solution obtained here satisfies all the sharp necessary conditions including those depending on the sign of certain multipliers. The trajectory consists of bang-bang and singular subarcs, as well as boundary subarcs induced by the two state constraints. The occurrence of boundary arcs is known to be impossible for regular Hamiltonians and odd-ordered state constraints if the order exceeds two. Additionally, a boundary point also occurs where the third-order state constraint is active. Such a situation is known to be the only possibility for odd-ordered state constraints to be active if the order exceeds two and if the Hamiltonian is regular. Because of the complexity of the optimal control, this single problem combines many of the features that make this kind of optimal control problems extremely hard to solve. Moreover, the problem contains nonsmooth data arising from the approximations of the aerodynamic forces and the distribution of the wind velocity components. Therefore, the paper can serve as some sort of user's guide to solve inequality constrained real-life optimal control problems by multiple shooting.An extended abstract of this paper was presented at the 8th IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Paris, France, 1989 (see Ref. 1).This paper is dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.  相似文献   

13.
In Part 1 (see Ref. 2), a multiple-subarc gradient-restoration algorithm (MSGRA) was developed with the intent of enhancing the robustness of gradient-restoration algorithms and also enlarging the field of applications. Indeed, MSGRA can be applied to optimal control problems involving multiple subsystems as well as discontinuities in the state and control variables at the interface between contiguous subsystems.In Part 2 (this paper), MSGRA is applied to compute the optimal trajectory for a multistage launch vehicle design, specifically, a rocket-powered spacecraft ascending from the Earth surface to a low Earth orbit (LEO). Single-stage, double-stage, and triple-stage configurations are considered. For multistage configurations, discontinuities in the mass occur at the interfaces between consecutive stages.The numerical results show that, given the current levels of the engine specific impulse and spacecraft structural factor, the single-stage version is not feasible at this time, while the double-stage and triple-stage versions are feasible. Further increases in the specific impulse and decreases in the structural factor are needed if the single-stage configuration has to become feasible.Also, the numerical results show that the optimal trajectory requires initially maximum thrust, followed by modulated thrust so as to satisfy the maximum acceleration constraint, followed by nearly zero thrust for coasting flight, followed by a final burst with moderate thrust so as to increase the spacecraft velocity to the circular velocity needed for LEO insertion. The above properties of the optimal thrust time history are useful for developing the guidance scheme approximating in real time the optimal trajectory for a launch vehicle design.  相似文献   

14.
Optimal abort landing trajectories of an aircraft under different windshear-downburst situations are computed and discussed. In order to avoid an airplane crash due to severe winds encountered by the aircraft during the landing approach, the minimum altitude obtained during the abort landing maneuver is to be maximized. This maneuver is mathematically described by a Chebyshev optimal control problem. By a transformation to an optimal control problem of Mayer type, an additional state variable inequality constraint for the altitude has to be taken into account; here, its order is three. Due to this altitude constraint, the optimal trajectories exhibit, depending on the windshear parameters, up to four touch points and also up to one boundary arc at the minimum altitude level. The control variable is the angle of attack time rate which enters the equations of motion linearly; therefore, the Hamiltonian of the problem is nonregular. The switching structures also includes up to three singular subarcs and up to two boundary subarcs of an angle of attack constraint of first order. This structure can be obtained by applying some advanced necessary conditions of optimal control theory in combination with the multiple-shooting method. The optimal solutions exhibit an oscillatory behavior, reaching the minimum altitude level several times. By the optimization, the maximum survival capability can also be determined; this is the maximum wind velocity difference for which recovery from windshear is just possible. The computed optimal trajectories may serve as benchmark trajectories, both for guidance laws that are desirable to approach in actual flight and for optimal trajectories may then serve as benchmark trajectories both for guidance schemes and also for numerical methods for problems of optimal control.This paper is dedicated to Professor George Leitmann on the occasion of his seventieth birthday.  相似文献   

15.
Wind energy has been continuously considered as a green, available, and economical alternative source of energy. For centuries, the transformed wind energy to drag-force has been used for transportation in watercrafts. With improvement of aerodynamics, the airfoil was invented to create and use a higher magnitude aerodynamic force, lift-force, in order to elevate airplanes. Later, the lift-force was horizontally applied as the thrust force in land/water wind-crafts. Whereas in airplanes horizontal airfoils (wing) create a vertical lift-force, installed vertical airfoils (wing-sail) produce a horizontal lift-force in wind-crafts. Therefore, this force can be used as thrust (driving) force in lift-based ice, water, and land vehicles. If the prevailing wind is constantly available, the vehicle speed can even exceed the wind velocity. Due to the complex kinematics of such vehicles, however, it should be noted that there would be always an optimum for the thrust force in order to control and navigate the vehicle to the destination point, and to avoid the severe undesired side-forces. This optimum is calculated in wind-craft trajectory software (WTS) which requires many inputs, including variable and constant parameters. Variable parameters consist of wind direction and magnitude in addition to vehicle’s position, velocities, and accelerations. On the other hand, design characteristics of the wind-driven vehicle are known as constant parameters. The land-yacht body’s drag is an unknown constant parameter which alters according to the relative wind. This implies that several wind tunnel experiment in different wind directions and speeds are required in order to obtain the drag coefficients.Therefore in order to bypass the wind tunnel measurements, this study aims to propose a fast and economical procedure to find the aforementioned drag coefficient by integration of a measurement and by a simulation approach. The obtained data can be later used in the optimization and control module of the WTS. The performance of this procedure has been investigated using a case study. For this purpose, a 1:4 prototype three-wheel land-yacht is first designed and fabricated. The land-yacht comprises of three major parts; horizontal airfoil (axle), vertical airfoil, and body. The dimensions of these elements are obtained after development of a code based on kinematics of the land-yacht. The axle is designed to increase the stability of the land-yacht, whereas the shape of the body is intended to produce a low drag coefficient in various directions. Furthermore, a set of experiments has been conducted to measure the body drag of the land-yacht in a direction parallel to the relative wind. This experiment is later used to develop and validate a computational fluid dynamics (CFD) model in order to estimate the drag of the land-yacht body in its various directions against the relative wind. The results show the adequate efficacy of this procedure to provide the required data for the optimization and control module of the WTS.  相似文献   

16.
This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I).An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.Portions of this were presented at the AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 6–9, 1986. The authors are indebted to Boeing Commercial Aircraft Company, Seattle, Washington and to Pratt and Whittney Aircraft, East Hartford, Connecticut for supplying some of the technical data pertaining to this study.The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, Virginia for helpful discussions. They are also indebted to Mr. Z. G. Zhao, Aero-Astronautics Group, Rice University, Houston, Texas for analytical and computational assistance.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516. This paper, a continuation of Ref.1, is based in part on Refs. 2–3.  相似文献   

17.
This paper is concerned with optimal flight trajectories in the presence of windshear. With particular reference to take-off, eight fundamental optimization problems [Problems (P1)–(P8)] are formulated under the assumptions that the power setting is held at the maximum value and that the airplane is controlled through the angle of attack.Problems (P1)–(P3) are least-square problems of the Bolza type. Problems (P4)–(P8) are minimax problems of the Chebyshev type, which can be converted into Bolza problems through suitable transformations. These problems are solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems.Numerical results are obtained for a large number of combinations of performance indexes, boundary conditions, windshear models, and windshear intensities. However, for the sake of brevity, the presentation of this paper is restricted to Problem (P6), minimax h, and Problem (P7), minimax . Inequality constraints are imposed on the angle of attack and the time derivative of the angle of attack.The following conclusions are reached: (i) optimal trajectories are considerably superior to constant-angle-of-attack trajectories; (ii) optimal trajectories achieve minimum velocity at about the time when the windshear ends; (iii) optimal trajectories can be found which transfer an aircraft from a quasi-steady condition to a quasi-steady condition through a windshear; (iv) as the boundary conditions are relaxed, a higher final altitude can be achieved, albeit at the expense of a considerable velocity loss; (v) among the optimal trajectories investigated, those solving Problem (P7) are to be preferred, because the altitude distribution exhibits a monotonic behavior; in addition, for boundary conditions BC2 and BC3, the peak angle of attack is below the maximum permissible value; (vi) moderate windshears and relatively severe windshears are survivable employing an optimized flight strategy; however, extremely severe windshears are not survivable, even employing an optimized flight strategy; and (vii) the sequential gradient-restoration algorithm (SGRA), employed in its dual form (DSGRA), has proven to be a powerful algorithm for solving the problem of the optimal flight trajectories in a windshear.Portions of this paper were presented at the AIAA Atmospheric Flight Mechanics Conference, Snowmass, Colorado, August 19–21, 1985. The authors are indebted to Boeing Commercial Aircraft Company, Seattle, Washington and to Pratt and Whitney Aircraft, East Hartford, Connecticut for supplying some of the technical data pertaining to this study.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516. The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, Virginia, for helpful discussions.This paper is based in part on Refs. 1–5.  相似文献   

18.
This paper presents the analytical solutions of the problem of optimum maneuvering of a glide vehicle flying in the hypervelocity regime. The investigation is based on the approximation of Allen and Eggers; namely, that along the fundamental part of a reentry or ascent trajectory, the aerodynamic forces greatly exceed the components of the gravitational force in the directions tangent and normal to the flight path.The problem consists of finding an optimal control law for the lift such that the final velocity or the final altitude is maximized. This problem can be viewed as bringing the vehicle to the best condition for interception, penetration, or making an evasive maneuver.If the range is free, the optimal lift control is obtained in closed form. If the lift control is bounded, then bounded control is optimal whenever it is reached. The switching sequences for different cases are discussed, and it is shown that there are at most two switchings. Bounded lift control is always at the ends of the optimal trajectory; for the case of two switchings, the optimal trajectory has an inflection point.The authors wish to thank the National Aeronautics and Space Administration for the Grant No. NGR-06-003-033 under which this work was carried out.  相似文献   

19.
The aerospace industry is increasingly relying on advanced numerical flow simulation tools in the early aircraft design phase. Today's flow solvers, which are based on the solution of the compressible Euler and Navier-Stokes equations, are able to predict aerodynamic behaviour of aircraft components under different flow conditions quite well [1]. Within the next few years numerical shape optimization will play a strategic role for future aircraft design. It offers the possibility of designing or improving aircraft components with respect to a pre-specified figure of merit, subject to geometrical and physical constraints. Here, aero-structural analysis is necessary to reach physically meaningful optimum wing designs. The use of single disciplinary optimizations applied in sequence is not only inefficient but in some cases is known to lead to wrong, non-optimal designs [2]. Although multidisciplinary optimizations (MDO) are possible with classical approaches for sensitivity evaluations by means of finite differences, these methods are extremely expensive in terms of calculation time, requiring the reiterated solution of the coupled problem for every design variable. However, adjoint approaches allow the evaluation of these sensitivities in an efficient way and lead to high accuracy. Firstly, we present the development and application of a continuous adjoint approach for single disciplinary aerodynamic shape design. This approach was previously developed at the German Aerospace Center (DLR) [3] and was the starting point for the extension to aero-structural wing designs. Secondly, we describe the adjoint approach and its implementation for the evaluation of the sensitivities for coupled aero-structure optimization problems [4] and its application to the drag reduction of the AMP wing by constant lift while taking into account the static deformation of this wing caused by the aerodynamic forces (see figures). Finally, we show the application of the coupled aero-structural adjoint approach for the Breguet formula of aircraft range, where in addition to the lift to drag ratio the weight of the AMP wing is taken into account (see figures). (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings’ stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号