首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rate constants for reactions of 2-pyridinol with one electron reductants, such ase aq and H atoms and one-electron oxidants, viz. OH, N3, Br 2 , C1 2 and O have been determined at different pH values using the pulse radiolysis technique. From the corrected absorption spectra of the product transient species, the extinction coefficients of these species at their respective absorption maxima have been determined. The kinetics of decay of these transients have been investigated. ThepK a values of transients formed bye aq and OH radical reactions have been estimated to be 7.6 and 3.5 respectively. Rate constants for electron transfer from semireduced 2-pyridinol to different electron acceptors have been determined.  相似文献   

2.
Redox reactions of pyridoxal (P-OH) with e¯aq, . OH, N . 3, SO . 4¯ and various organo-haloperoxyl radicals have been studied using pulse radiolysis technique. The rate constants for the reaction of P-OH or P-O¯ with the above-mentioned radicals and the transient absorption spectra have been measured. The transients formed in the reaction of hydrated electron and oxidizing radicals with pyridoxal have been assigned. An attempt has been made to find a correlation between the rate constants and Taft parameter for the reactions with the organo-haloperoxyl radicals. It has also been observed that the one-electron oxidized radical of pyridoxal is repaired by uric acid. The reduction potential for the P-OH .+/P-OH couple at pH 7, as measured by cyclic voltammetry, has been found to be +1.11 V vs. NHE.  相似文献   

3.
首次用脉冲辐解时间分辨方法研究了etoposide(VP16)在水溶液中与N~3^.,(SCN)~2^.^-和e~a~q^-之间发生的单电子氧化还原反应,测定了VP16的阴离子自由基、脱质子中性自由基的特征吸收谱;测得VP16与e~a~q^-,N~3^.,(SCN)~2^.^-的绝对反应速率常数分别为2.7×10^9,3.2×10^9和2.5×10^8dm^3.mol^-^1.s^-^1。研究表明,水溶液中的VP16可为248nm激光光电离,光电离的瞬态产物为阳离子自由基及脱质子中性自由基,并且测定了其酸碱电离的pK值。测得SO~4^.^-自由基单电子氧化VP16的反应速率常数为2.8×10^9dm^3.mol^-^1.s^-^1。  相似文献   

4.
The reaction of CO with bilirubin which is not detectable in homogeneous aqueous medium proceeds almost with diffusion controlled rate in CTAB micellar system. This could be explained on the basis of catalysis caused by the possible electrostatic surface potential of cationic CTAB Micelles. The rate constant for the oxidation of bilirubin by haloperoxyl radicals have been shown to increase with increasing solvent polarity. Although the polarity effect was small, it followed a trend in the expected direction. Micellar effect was not observed in the oxidation reactions when alcohol was present in high concentration. But a small increase in the rate constant was observed when alcohol concentration was lower. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Reactions of l-arginine (Arg) with hydroxyl radical (OH) and sulfate radical anion (SO4) were kinetically investigated by the pulse radiolysis technique. Hydrogen abstraction from Arg by OH afforded redox chemically oxidizing, neutral, and reducing carbon-centered Arg radicals. Kinetic properties of the radicals indicated that the reducing species might include the δ-C-centered Arg radical and CO2 radical anion. Similar transient spectra were observed in the SO4 reaction with Arg, suggesting direct oxidation at the guanidino group is less likely.  相似文献   

6.
7.
The flavonolignans (silybin and analogues) are important natural compounds with multiple biological activities operating at various cell levels. Many of these effects are connected with their radical scavenging activities. In the present study, free‐radical scavenging and antioxidant activities of four natural flavonoids, namely silybin, naringenin, naringin, and hesperetin, have been studied using nanosecond pulse radiolysis techniques. The kinetics and mechanisms of the reactions of silybin and analogues with various oxidizing radicals (such as ?OH,N3?, CCl3OO?, SO4??) have been investigated. Furthermore, the transient species has been assigned and radical scavenging rate constants have also been measured. Moreover, the structure–activity relationships between chemical structures of the flavonoids and their radical scavenging activities are further analayzed by theoretical calculation. Combined our previous observation of the fast reparation of DNA damage and efficient DNA protection against radiation damage in vitro, it can be confirmed that test flavonoids are promising molecules to be used for their potential antioxidant properties. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 590–597, 2011  相似文献   

8.
At near neutral pH (approx. 5.5), the OH-adduct of chlorogenic acid (CGA), formed on pulse radiolysis of N2O-saturated aqueous CGA solutions (λ max = 400 and 450 nm) with k = 9 × 109 dm3 mol−1 s−1, rapidly eliminates water (k = 1 × 103 s−1) to give a resonance-stabilized phenoxyl type of radical. Oxygen rapidly adds to the OH-adduct of CGA (pH 5.5) to form a peroxyl type of radical (k = 6 × 107 dm3 mol−1 s−1). At pH 10.5, where both the hydroxyl groups of CGA are deprotonated, the rate of reaction of · OH radicals with CGA was essentially the same as at pH 5.5, although there was a marked shift in the absorption maximum to approx. 500 nm. The CGA phenoxyl radical formed with more specific one-electron oxidants, viz., Br 2 ·− and N 3 · radicals show an absorption maximum at 385 and 500 nm, k ranging from 1–5.5 × 109 dm3 mol−1 s−1. Reactions of other one-electron oxidants, viz., NO 2 · , NO· and CCl3OO· radicals, are also discussed. Repair rates of thymidine, cytidine and guanosine radicals generated pulse radiolytically at pH 9.5 by CGA are in the range of (0.7–3) × 109 dm3 mol−1 s−1.  相似文献   

9.
Radiation chemical reactions ofOH, O•−, N3 and e aq t- witho- and m-hydroxycinnamic acids were studied. The second-orderrateconstantsforthereaction ofOH with ortho and meta isomers in buffer solution at pH7 are 3.9±0.2 × 109 and 4.4 ± 0.3 × 109 dm3 mol-1 s-1 respectively. At pH 3 the rate with the ortho isomer was halved (1.6 ± 0.4 × 109 dm3 mol-1 s-1) but it was unaffected in the case of meta isomer (k = 4.2±0.6 × 109dm3mol-1 s-1). The rate constant in the reaction of N3 with the ortho isomer is lower by an order of magnitude (k = 4.9 ± 0.4 × 108 dm3 mol-1s-1). The rates of the reaction of e aq t- with ortho and meta isomers were found to be diffusion controlled. The transient absorption spectrum measured in theOH witho-hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of Obb−with theo-isomer whereas the meta isomer has a maximum at 390 and a broad shoulder at 450 nm. In the reaction of the absorption peaks were centred at 370–380 nm in both the isomers. The underlying reaction mechanism is discussed.  相似文献   

10.
The rate constants of the reactions of e aq ? and the OH· radical with the oxalate ion in a neutral aqueous solution were measured by means of the pulse radiolysis technique. They were found to be (3.5 ± 0.5) × 107 and (1.5 ± 0.2) × 107 l mol?1 s?1, respectively. The radical anion ?OOC-C·OO2? is characterized by an optical absorption band that has a maximum at 270 nm and a molar absorption coefficient of (2400 ± 200) l mol?1 cm?1. The radical anion ·OOC-COO?, the product of the reaction with the OH· radical, exhibits absorption that has no maximum and increases in intensity with a decrease in the wavelength extending to the UV region (?220 = 1800 l mol?1 cm?1). The mechanism of radiation-chemical transformations in aqueous oxalate solutions is discussed.  相似文献   

11.
The pulse radiolysis technique has been employed to study the reaction of ·OH radical with tryptophanol (TPN). Reactions of specific one-electron oxidants like Br2· - and N3· and ·H atom were carried out to understand the contribution of different channels of · OH radical reaction with TPN. The studies were carried out in the pH range 3 to 10. One-electron oxidation of TPN (pH 3) produced radical cation absorbing at 570 nm. However, at higher pH, deprotonation of TPN cation radical takes place from N(1) position and indolyl radical absorbing at 520 nm with a p K a value of 3.6 is formed. Redox titration with TMPD, ABTS2- and MV2+ was performed to determine the total yield of oxidizing and reducing radicals produced during ·OH reaction.  相似文献   

12.
Tributyl phosphate (TBP) is the most common organic compound used in liquid-liquid separations for the recovery of uranium, neptunium, and plutonium from acidic nuclear fuel dissolutions. The goal of these processes is to extract the actinides while leaving fission products in the acidic, aqueous phase. However, the radiolytic degradation of TBP has been shown to reduce separation factors of the actinides from fission products and to impede the back-extraction of the actinides during stripping. As most previous investigations of the radiation chemistry of TBP have focused on steady state radiolysis and stable product identification, with dibutylphosphoric acid (HDBP) invariably being the major product, here we have determined room temperature rate constants for the reactions of TBP and HDBP with the hydroxyl radical [(5.00 +/- 0.05) x 10(9), (4.40 +/- 0.13) x 10(9) M(-1) s(-1)], hydrogen atom [(1.8 +/-0.2) x 10(8), (1.1 +/- 0.1) x 10(8) M(-1) s(-1)], nitrate radical [(4.3 +/- 0.7) x 10(6), (2.9 +/- 0.2) x 10(6) M(-1) s(-1)], and nitrite radical (<2 x 10 (5), <2 x 10(5) M(-1) s(-1)), respectively. These data are used to discuss the mechanism of TBP radical-induced degradation.  相似文献   

13.
14.
Using the pulse radiolysis technique we have studied the oxidation by various inorganic radicals of four water soluble ferrocene derivatives, hydroxyethyl, dimethylaminomethyl, monocarboxylic acid and dicarboxylic acid. We report the second order rate constants for these reactions, the stabilities and spectral properties of the ferrocinium products, and the electrochemically determined ferrocinium/ferrocene redox potentials. We also present preliminary estimates of tyrosine and tryptophan radical redox potentials obtained with the dicarboxylic acid ferrocene derivative as reference, and we discuss the relationship between redox potential differences and the reactivities of the ferrocenes with the inorganic radicals.  相似文献   

15.
Radiolytic reduction of BiOClO4 in aqueous solutions leads to the formation of bismuth clusters and larger nanoparticles. The mechanisms of redox reactions of the polycationic Bi(III) species that exist in the solution were investigated with pulse radiolysis. The kinetic and spectral properties of the transients formed by the reaction of these species with the primary radicals from water radiolysis are reported. The single-electron reduction product, Bi9(OH)224+, absorbs at lambdamax = 273 nm, while the OH adduct, Bi9(OH)235+, has a broad absorption spectrum with a maximum at 280 nm and a shoulder at 420 nm. Several rate constants were measured: k (e-aq + Bi9(OH)225+) = 1.2 x 1010 M-1 s-1 and k (OH + Bi9(OH)225+) = 1.5 x 109 M-1 s-1. The reduced species, Bi9(OH)224+ further reacts with (CH3)2COH radicals, but not with CH2C(CH3)2OH radicals from t-butanol, to produce a doubly reduced polynuclear species. A few reactions of the reduction of the Bi salt in the presence of poly(acrylic acid) are also described. In the presence of the polymer, a metal-polymer complex is formed prior to the irradiation, and the reduction reactions are significantly slowed down.  相似文献   

16.
Pulse radiolytic reduction of bovine serum albumin (BSA) and lysozyme by CO2 radical in presence of polyvinyl alcohol (PVA) has been studied. At pH 6.8 in presence of 2% (w/v) PVA, reduction of BSA and lysozyme (both at 1×10−4 mol dm−3) give an additional transient peak at 390 nm along with the usual 420 nm peak. The bimolecular rate constants for the reaction of CO2 radical at pH 6.8±0.2 with BSA are 2.7×108 and 7.13×108 dm3 mol−1 s−1 at 420 nm and 390 nm respectively. The same for lysozyme are 3.2×108 and 5.6×108 dm3 mol−1 s−1 at 420 nm and 390 nm, respectively. Dimethyl disulfide also gives 390 nm and 420 nm peaks in this system upon reduction with CO2 radical. The 390 nm peak is ascribed to the sulfenium radical (RSS(H)R). Studies on the variation of pH suggests the protonation of RSSR radical (420 nm) to form RSS(H)R radical (390 nm) in this viscous media. The decay of RSS(H)R radical occurs via formation of RS radical and RS(H)S(H)R, the final product being RSH in both cases.  相似文献   

17.
The kinetics of the reactions of hydroxyl radicals with aliphatic alcohols in aqueous solution were studied using pulse radiolysis. Based on the optical absorption observed in the UV region, the rate constants for the reaction of hydroxyl radicals with methanol, ethanol, 2-propanol and tert-butyl alcohol were determined to be 9.0×108, 2.2×109, 2.0×109 and 6.2×108 dm3 mol−1 s−1, respectively. The values obtained here by direct observation of the alcohol radicals basically confirm the values which were earlier determined indirectly by competition.  相似文献   

18.
The antitumor mechanism of etoposide (VP-16) is investigated using pulse radiolysis technology. The oxidizing mechanism of VP-16 is studied by sodium persulfate, and the reaction rate constant is 4.04× 109 L· mol-1 · s-1. The electron-transfer between VP-16 and tyrosine is observed and the reaction rate constant is 1.1 - 108 L · mol-1· s-1.  相似文献   

19.
Reactions of OH radicals and some one-electron oxidants with 2-aminopyridine (2-AmPy) and 3-aminopyridine (3-AmPy) were studied in aqueous solutions using pulse radiolysis technique. The OH adduct of 2-AmPy at pH 9 has an absorption maximum at 360 nm along with a weak absorption band in the visible region and was found to be reactive with oxygen. The rate constant for its reaction with O2 was determined to be 1.0×108 dm3 mol−1 s−1. At pH 4 also, the OH adduct of 2-AmPy has an absorption band at 360 nm. However, there are differences in the absorption at other wavelengths. From the plot of ΔOD vs. pH at 340 nm, the pKa of the OH adduct was determined to be 6.5. Among the specific oxidants, only SO4−√ radicals were able to oxidize 2-AmPy. In the case of 3-aminopyridine (3-AmPy), the transient species formed by OH radical reaction at pH 9 has an absorption maximum at 410 nm with shoulder bands on both the sides. Its absorption spectrum at pH 4 was different indicating the existence of a pK value for the OH adduct. pKa of 3-AmPy-OH radical adduct species was evaluated to be 5.7. This adduct species was also found to be reactive with oxygen (k=7.6×106 dm3 mol−1 s−1). Specific one-electron oxidants like N3, Br2−√ C2−√ and SO4−√ were able to oxidize 3-AmPy indicating that it is easier to oxidize 3-AmPy as compared to 2-AmPy.  相似文献   

20.
By using time-resolved kinetic spectrophotometry and pulse radiolysis technique, the oxidation of Phe by SO4 - radical has been investigated both in aqueous and water/acetonitrile mixed solutions. The results reveal that attack of the oxidizing SO4 - radical on Phe leads directly to the formation of Phe cation radical 3 with a strong absorption peak at 310 nm, then it proceeds in three competitive reactions via either hydroxylation, deprotonation or decarboxylation, which were found to be strongly dependent upon the ionization state of the substitutes —COOH and —NH2 and the nature of the solvents. Decarboxylation takes place only when the carboxyl group is deprotonated. At high pH deprotonation of Phe cation radical 3 is much easier to occur than that in neutral or acid solutions. Moreover, with addition of acetonitrile, deprotonation is more predominant than hydroxylation, whereas in aqueous solutions hydroxylation is much easier to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号