首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
RF heating of solid-state biological samples is known to be a destabilizing factor in high-field NMR experiments that shortens the sample lifetime by continuous dehydration during the high-power cross-polarization and decoupling pulses. In this work, we describe specially designed, large volume, low-E 15N-1H solid-state NMR probes developed for 600 and 900 MHz PISEMA studies of dilute membrane proteins oriented in hydrated and dielectrically lossy lipid bilayers. The probes use an orthogonal coil design in which separate resonators pursue their own aims at the respective frequencies, resulting in a simplified and more efficient matching network. Sample heating at the 1H frequency is minimized by a loop-gap resonator which produces a homogeneous magnetic field B1 with low electric field E. Within the loop-gap resonator, a multi-turn solenoid closely matching the shape of the sample serves as an efficient observe coil. We compare power dissipation in a typical lossy bilayer sample in the new low-E probe and in a previously reported 15N-1H probe which uses a double-tuned 4-turn solenoid. RF loss in the sample is measured in each probe by observing changes in the 1H 360 degrees pulse lengths. For the same values of 1H B1 field, sample heating in the new probe was found to be smaller by an order of magnitude. Applications of the low-E design to the PISEMA study of membrane proteins in their native hydrated bilayer environment are demonstrated at 600 and 900 MHz.  相似文献   

2.
In the application of solid-state NMR to many systems, the presence of radiofrequency (rf) electric fields inside classical solenoidal coils causes heating of lossy samples. In particular, this is critical for proteins in ionic buffers. Rf sample heating increases proportional to frequency which may result in the need to reduce the rf pulse power to prevent partial or total sample deterioration. In the present paper, we propose a multifrequency-tunable NMR resonator where the sample is electrically shielded from the NMR coil by a conductive sheet that increases the magneto-electric ratio. Expressions for the B1 efficiency as function of magnetic and electric filling factors are derived that allow a direct comparison of different resonators. Rf efficiency, homogeneity, signal-to-noise, and rf sample heating are compared. NMR spectra at 700MHz on ethylene glycol, glycine, and a model protein were acquired to compare the resonators under realistic experimental conditions.  相似文献   

3.
Thermodynamic limit of magnetization corresponding to the intact proton bath usually cannot be transferred in a single cross-polarization contact. This is mainly due to the finite ratio between the number densities of the high- and low-gamma nuclei, quantum-mechanical bounds on spin dynamics, and Hartmann-Hahn mismatches due to rf field inhomogeneity. Moreover, for fully hydrated membrane proteins refolded in magnetically oriented bicelles, short spin-lock relaxation times (T1ρ) and rf heating can further decrease cross polarization efficiency. Here we show that multiple equilibrations-re-equilibrations of the high- and low-spin reservoirs during the preparation period yield an over twofold gain in the magnetization transfer as compared to a single-contact cross polarization (CP), and up to 45% enhancement as compared to the mismatch-optimized CP-MOIST scheme for bicelle-reconstituted membrane proteins. This enhancement is achieved by employing the differences between the spin-lattice relaxation times for the high- and low-gamma spins. The new technique is applicable to systems with short T1ρ's, and speeds up acquisition of the multidimensional solid-state NMR spectra of oriented membrane proteins for their subsequent structural and dynamic studies.  相似文献   

4.
A strip-shield inserted between a high inductance double-tuned solenoid coil and the glass tube containing the sample improves the efficiency of probes used for high-field solid-state NMR experiments on lossy aqueous samples of proteins and other biopolymers. A strip-shield is a coil liner consisting of thin copper strips layered on a PTFE (polytetrafluoroethylene) insulator. With lossy samples, the shift in tuning frequency is smaller, the reduction in Q, and RF-induced heating are all significantly reduced when the strip-shield is present. The performance of 800 MHz 1H/15N and 1H/13C double-resonance probes is demonstrated on aqueous samples of membrane proteins in phospholipid bilayers.  相似文献   

5.
傅日强 《波谱学杂志》2009,26(4):437-456
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.  相似文献   

6.
The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman–Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194–241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.  相似文献   

7.
Solid-state NMR experiments on mechanically aligned bilayer and magnetically aligned bicelle samples demonstrate that membrane proteins undergo rapid rotational diffusion about the normal in phospholipid bilayers. Narrow single-line resonances are observed from 15N labeled sites in the trans-membrane helix of the channel-forming domain of the protein Vpu from HIV-1 in phospholipid bilayers with their normals at angles of 0 degrees, 20 degrees, 40 degrees, and 90 degrees, and bicelles with their normals at angles of 0 degrees and 90 degrees with respect to the direction of the applied magnetic field. This could only occur if the entire polypeptide undergoes rotational diffusion about the bilayer normal. Comparisons between experimental and simulated spectra are consistent with a rotational diffusion coefficient (DR) of approximately 10(5)s-1.  相似文献   

8.
Bicelles composed of the long-chain biphenyl phospholipid TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC) and the short-chain phospholipid DHPC align with their bilayer normals parallel to the direction of the magnetic field. In contrast, in typical bicelles the long-chain phospholipid is DMPC or DPPC, and the bilayers align with their normals perpendicular to the field. Samples of the membrane-bound form of the major coat protein of Pf1 bacteriophage in TBBPC bicelles are stable for several months, align magnetically over a wide range of temperatures, and yield well-resolved solid-state NMR spectra similar to those obtained from samples aligned mechanically on glass plates or in DMPC bicelle samples "flipped" with lanthanide ions so that their bilayer normals are parallel to the field. The order parameter of the TBBPC bicelle sample decreases from approximately 0.9 to 0.8 upon increasing the temperature from 20 degrees C to 60 degrees C. Since the frequency spans of the chemical shift and dipolar coupling interactions are twice as large as those obtained from proteins in DMPC bicelles without lanthanide ions, TBBPC bicelles provide an opportunity for structural studies with higher spectral resolution of the metal-binding membrane proteins without the risk of chemical or spectroscopic interference from the added lanthanide ions. In addition, the large temperature range of these samples is advantageous for the studies of membrane proteins that are unstable at elevated temperatures and for experiments requiring measurements as a function of temperature.  相似文献   

9.
A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E(1) cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.  相似文献   

10.
Aligning lipid bilayers in nanoporous anodized aluminum oxide (AAO) is a new method to help study membrane proteins by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR) spectroscopic methods. The ability to maintain hydration, sample stability, and compartmentalization over long periods of time, and to easily change solvent composition are major advantages of this new method. To date, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) has been the only phospholipid used for membrane protein studies with AAO substrates. The different properties of lipids with varying chain lengths require modified sample preparation procedures to achieve well formed bilayers within the lining of the AAO substrates. For the first time, the current study presents a simple methodology to incorporate large quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), DMPC, and 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) phospholipids inside AAO substrate nanopores of varying sizes. (2)H and (31)P solid-state NMR were used to confirm the alignment of each lipid and compare the efficiency of alignment. This study is the first step in standardizing the use of AAO substrates as a tool in NMR and EPR and will be useful for future structural studies of membrane proteins. Additionally, the solid-state NMR data suggest possible applications of nanoporous aluminum oxide in future vesicle fusion studies.  相似文献   

11.
The homonuclear dipolar coupling between the three equivalent (19)F-spins of a trifluoromethyl group, rotating about its threefold symmetry axis, was studied by multipulse solid-state NMR. A modified CPMG sequence was used first to resolve the dipolar splitting of a powder sample, and then to follow its orientation-dependence in uniaxially aligned samples. Our aim is to employ the CF(3)-group as a highly sensitive reporter to describe the mobility and spacial alignment of (19)F-labeled molecules in biomembranes. As an example, the fluorinated anti-inflammatory drug, flufenamic acid, was embedded as a guest compound in lipid bilayers. Undistorted (19)F dipolar spectra of its CF(3)-group were obtained without (1)H-decoupling, revealing a sharp triplet lineshape. When an oriented membrane sample was tilted in the magnetic field, the change in dipolar splittings confirmed that the guest molecule is motionally averaged about the membrane normal, as expected. A different behavior of flufenamic acid, however, was observed under conditions of low bilayer hydration. From this set of orientation-dependent lineshapes we conclude that the axis of motional averaging becomes aligned perpendicular to the sample normal. It thus appears that flufenamic acid induces a hexagonal phase in the membrane at low hydration. Finally, the dipolar (19)F NMR experiments were extended to frozen samples, where no molecular diffusion occurs besides the fast rotation about the CF(3)-axis. Also under these conditions, the CPMG experiment with composite pulses could successfully resolve the dipolar coupling between the three (19)F-nuclei.  相似文献   

12.
Continuous radio-frequency (rf) irradiation during decoupling and spin-lock periods in NMR pulse sequences may lead to undesired sample heating. Heat-sensitive samples can suffer damage from the sudden temperature rise which cannot be adequately compensated by the temperature control system. Moreover, as the heating is spatially inhomogeneous, higher temperature increases can arise locally than are indicated by the average increase detected by the temperature controller. In this work we present a technique that allows measurement of a real-time 2D-image of the temperature distribution inside an NMR sample during an experiment involving rf-heating. NMR imaging methods have previously been used to project the temperature distribution inside an NMR sample onto a single spatial axis or to acquire steady-state 2D- temperature distributions. The real-time 2D-temperature profiles obtained with our procedure provide much more detailed data. Our results show, that not only inhomogeneous heating but also inhomogeneous sample cooling contribute to the build-up of temperature gradients across the sample. The technique can be used to visualize rf-heating in order to protect sensitive samples and to experimentally test new coil geometries or to guide probehead design.  相似文献   

13.
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.  相似文献   

14.
The construction and performance of a scroll coil double-resonance probe for solid-state NMR on stationary samples is described. The advantages of the scroll coil at the high resonance frequencies of (1)H and (31)P include: high efficiency, minimal perturbations of tuning by a wide range of samples, minimal RF sample heating of high dielectric samples of biopolymers in aqueous solution, and excellent RF homogeneity. The incorporation of a cable tie cinch for mechanical stability of the scroll coil is described. Experimental results obtained on a Hunter Killer Peptide 1 (HKP1) interacting with phospholipid bilayers of varying lipid composition demonstrate the capabilities of this probe on lossy aqueous samples.  相似文献   

15.
A method is presented for the calculation of REDOR dephasing for specifically labeled membrane-spanning peptides in uniformly aligned lipid bilayers under magic angle oriented sample spinning (MAOSS) conditions. Numerical simulations are performed for dephasing of (13)C signal by (15)N when the labels are placed in an alpha-helical peptide at the carbonyl of residue (i) and amide nitrogen of residue (i + 2) to show the dependency of REDOR echo intensity on the peptide tilt angle relative to the membrane normal. The approach was applied to the labeled transmembrane domain of phospholamban ([(15)N-Leu(37), (13)C-Leu(39)]PLBTM) incorporated into dimyristoylphosphatidylcholine bilayers. The dephasing observed for a random membrane dispersion showed that the peptide was alpha-helical in the region including the two labels, and dephasing in oriented membranes showed that the peptide helix was tilted by 25 degrees +/- 7 degrees relative to the bilayer normal. These results agree with those obtained by other spectroscopic methods.  相似文献   

16.
AssignFit is a computer program developed within the XPLOR-NIH package for the assignment of dipolar coupling (DC) and chemical shift anisotropy (CSA) restraints derived from the solid-state NMR spectra of protein samples with uniaxial order. The method is based on minimizing the difference between experimentally observed solid-state NMR spectra and the frequencies back calculated from a structural model. Starting with a structural model and a set of DC and CSA restraints grouped only by amino acid type, as would be obtained by selective isotopic labeling, AssignFit generates all of the possible assignment permutations and calculates the corresponding atomic coordinates oriented in the alignment frame, together with the associated set of NMR frequencies, which are then compared with the experimental data for best fit. Incorporation of AssignFit in a simulated annealing refinement cycle provides an approach for simultaneous assignment and structure refinement (SASR) of proteins from solid-state NMR orientation restraints. The methods are demonstrated with data from two integral membrane proteins, one α-helical and one β-barrel, embedded in phospholipid bilayer membranes.  相似文献   

17.
18.
Spectral unraveling by space-selective Hadamard spectroscopy (SUSHY) enables recording of NMR spectra of multiple samples loaded in multiple sample tubes in a modified spinner turbine and a regular 5mm liquids NMR probe equipped with a tri-axis pulsed field gradient coil. The individual spectrum from each sample is extracted by adding and subtracting data that are simultaneously obtained from all the tubes based on the principles of spatially resolved Hadamard spectroscopy. The well-known Hadamard spectroscopy has been applied for spatial selection and the method utilizes standard configuration of NMR instrument hardware. The SUSHY method can be easily incorporated in multi-dimensional multi-tube NMR experiments. This method combines the excitation multiplexing, natural advantage of FTNMR, and sample multiplexing and offers high-throughput by reducing the total experimental time by up to a factor of four in a 4-tube mode.  相似文献   

19.
A method for measuring site-specific amide hydrogen-deuterium exchange rates for membrane proteins in bilayers is reported and evaluated. This method represents an adaptation and extension of the approach of Dempsey and co-workers (Biophys. J. 70, 1777-1788 (1996)) and is based on reconstituting (15)N-labeled membrane proteins into phospholipid bilayers, followed by lyophilization and rehydration with D(2)O or H(2)O (control). Following incubation for a time t under hydrated conditions, samples are again lyophilized and then solubilized in an organic solvent system, where (1)H-(15)N HSQC spectra are recorded. Comparison of spectra from D(2)O-exposed samples to spectra from control samples yields the extent of the H-D exchange which occurred in the bilayers during time t. Measurements are site specific if specific (15)N labeling is used. The first part of this paper deals with the search for a suitable solvent system in which to solubilize complex membrane proteins in an amide "exchange-trapped" form for NMR quantitation of amide peak intensities. The second portion of the paper documents application of the overall procedure to measuring site-specific amide exchange rates in diacylglycerol kinase, a representative integral membrane protein. Both the potential usefulness and the significant limitations of the new method are documented.  相似文献   

20.
We report NMR data for magnetically oriented phospholipid bilayers which have been doped with a lipid derivatized with a polyethylene glycol polymer headgroup to stabilize samples against aggregation. (13)C, (31)P, and (2)H NMR data indicate that the incorporation of PEG2000-PE (1% molar to DMPC) does not interfere with the orientation properties of bicelles prepared at 25% w/v with or without the presence of lanthanide. Bicelles prepared at 10% w/v are also shown to orient when PEG2000-PE is added. The addition of PEG2000-PE to cholesterol-containing, lanthanide-flipped bicelles is shown to inhibit sample phase separation and improve spectral quality. Furthermore, the addition of PEG2000-PE to high w/v bicelles (40% w/v) is demonstrated to lead to an increase in overall sample order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号