首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
甲壳型液晶高分子研究进展与展望   总被引:3,自引:0,他引:3  
简要介绍了甲壳型液晶高分子的模型理论, 概述了当前国内外对甲壳型液晶高分子设计、 液晶相态、 性质及基于甲壳型液晶高分子的嵌段共聚物体系的设计和自组装性质等研究进展, 展望了今后的研究方向.  相似文献   

2.
侧链液晶高分子体系里,液晶基元可以通过尾接或腰接的方式与主链相连.一般认为,在液晶基元与主链间插入一段长度合适的"柔性间隔基"可有效实现主、侧链间的动力学去偶合,从而有利于侧基液晶基元之间的有序排列.作为一类特殊的腰接型侧链液晶高分子,甲壳型液晶高分子中体积较大的侧基(如棒状液晶基元)通过非常短的间隔基或仅通过一个碳-碳键直接横挂至主链上,这导致了强烈的甲壳效应,使得主链被迫伸展.因此,可从与"柔性间隔基"完全不同的角度出发,充分利用主链和侧基间的偶合作用,设计甲壳型液晶高分子.本文综述了腰接型侧链液晶高分子中的侧基甲壳效应、甲壳型液晶高分子中由主链与侧基相互作用所导致的特殊构象以及液晶相结构.研究表明,侧基甲壳效应在调控甲壳型液晶高分子的形状、尺寸以及螺旋结构等方面有重要作用.甲壳型液晶高分子可作为刚-柔嵌段共聚物的刚性链段,也可作为主/侧链结合型液晶高分子的主链部分参与到多层次分级超分子有序结构的构筑之中.  相似文献   

3.
甲壳型液晶高分子可以呈现超分子柱或片层的链构象,因此可以作为超分子液晶基元形成多种液晶相态,如六方柱状相、柱状向列相、六方柱状向列相、近晶相等.将纳米构筑单元,如一维的二联苯、二维的苯并菲、三维的多面体低聚倍半硅氧烷(POSS)等,引入到甲壳型液晶高分子中,所得聚合物可以自组装形成在亚十纳米和近纳米尺度的多级有序结构.这些结构具有尺寸可控及单分散的优点,可望在有机光电、纳米多孔膜以及纳米光刻等领域有着广阔的应用前景.本文主要介绍了将二联苯、偶氮苯、棒状多苯结构、苯并菲和POSS基元引入到甲壳型液晶高分子中制备多级组装结构的相关工作.  相似文献   

4.
甲壳型液晶聚合物(mesogen-jacketed liquid crystal polymer,MJLCP)是1987年由周其凤教授[1]首先提出的概念.从化学结构看,甲壳型液晶聚合物属于侧链型,由烯类单体经链式聚合制得,容易得到高分子量的产物,具有一般柔性侧链型液晶聚合物的一些优点.但是与柔性侧链型液晶聚合物不同的是,MJLCP分子中的刚性液晶基元是通过腰部或重心位置与主链相联结的,在主链与刚性液晶基元的侧基之间只有很短或者没有柔性间隔基.由于在这类液晶聚合物的分子主链周围空间内刚性液晶基元的密度很高,分子主链被由液晶基元形成的外壳所包裹并被迫采取相对伸直的刚性链构象.因此,这类液晶聚合物又和主链型刚性链液晶聚合物相似,具有较明显的链刚性.近年来,周其凤课题组围绕甲壳型液晶聚合物深入开展了分子设计与合成、分子结构与性能等多方面的研究.其中,设计合成具有特定功能的甲壳型液晶聚合物是在以往研究工作和学科交叉融合的基础上发展起来的一项新的研究工作.将一些有特殊功能的基团引入到甲壳型液晶聚合物中会使其具有崭新的特性.  相似文献   

5.
发光液晶高分子结合了液晶高分子的有序性、稳定性、力学性能和发光分子的发光特性,有着广阔的应用前景。为了获得高效的发光液晶高分子,不同结构的发光液晶高分子被成功地设计与合成,包括主链型、侧链型、“甲壳”型发光液晶高分子、发光液晶高分子网络等。同时,分子结构、液晶相结构与光物理性质的关系也得到了相应的深入研究。本文总结了发光液晶高分子的最新研究进展,详细介绍了不同类型发光液晶高分子的分子结构设计合成、结构与性能、相关应用,并对其发展前景进行了展望。  相似文献   

6.
不同主链"甲壳型"高分子的合成及其液晶性研究   总被引:1,自引:0,他引:1  
"甲壳型"液晶高分子(MJLCP)的概念是周其凤等[1]在1987年首次提出的,随后分别被文献[2~8]所证实.由于液晶基元对空间的要求,液晶高分子主链采取尽可能伸展的构象.虽然它们在化学结构上属于侧链型,但在分子形态上更接近于主链型液晶高分子,但至今尚不清楚其产生液晶性的原因.  相似文献   

7.
介绍了近年在甲壳型液晶高分子的设计、合成、表征以及结构与性能关系探索方面的进展,对今后的研究方向提出了粗浅的看法。  相似文献   

8.
交联液晶高分子兼具液晶取向有序性和交联聚合物熵弹性等特点,能够以动态可调节和可逆的方式来模仿生物体的行为,在仿生器件、柔性机器人、智能表面、生物医药等领域具有良好的应用前景.本综述总结了近几年智能响应性交联液晶高分子在仿生致动器方面的研究进展,从响应性交联液晶高分子的结构和驱动机理出发,讨论了响应性交联液晶高分子的合成工艺、制备技术和成型方法,以及响应性交联液晶高分子对光、热、磁、湿度的响应.此外,介绍了响应性交联液晶高分子致动器在柔性机器人、人工肌肉、微流体运输等领域的应用.最后,对响应性交联液晶高分子的发展前景进行了展望.这项工作主要讨论了响应性交联液晶高分子,旨在为具有新颖功能和更有挑战性的智能微型致动器提供新的设计思路.  相似文献   

9.
液晶光定向层材料   总被引:4,自引:0,他引:4  
本文综述了近10年来液晶显示用光定向层材料领域的研究现状和进展情况,主要概述了光降解型、光致异构型、光交联型以及自组装等材料,并对目前报道的液晶光定向机理进行了总结和归纳。  相似文献   

10.
一些具有伸展构象的侧链液晶高分子,如甲壳型液晶高分子或树枝化高分子,可以经由分子链的平行排列而呈现柱状液晶相.一般认为,该类柱状相的基本结构单元是单根高分子链所形成的超分子柱.而以几根链组装形成的超分子柱,即"多链超分子柱",也可作为侧链液晶高分子柱状相的基本结构单元,但多年以来这一现象并未引起人们的重视.近期,我们以hemiphasmid型侧链液晶高分子为研究对象,阐明了"多链超分子柱"是侧链液晶高分子柱状相微相分离的一种重要形式.本文从hemiphasmid型侧链液晶高分子的柱状相结构分析、化学结构对"多链超分子柱"的影响、"多链超分子柱"模型的理论分析与预测、"多链超分子柱"的"柱内缠结"以及hemiphasmid型侧链液晶聚降冰片烯的功能性等若干方面,对基于"多链超分子柱"的侧链液晶高分子柱状相进行了介绍.我们认为,深入研究"多链超分子柱"性质,将拓展侧链液晶高分子的应用领域,加深对高分子物理基本问题的认识.  相似文献   

11.
History of Liquid Crystalline PolymersThe liquid crystalline(LC)state was first observed by Austrian botanist and chemist F.Reinitzer more than a century ago,and it was then confirmed in 1888 by German physicist O.Lehmann who named such a state of matter as"liquid crystal"in 1900.While low molecular mass(LMM)liquid crystals were successfully used in LC displays(LCDs),the development of LC polymers(LCPs)followed an independent path.Conceptually,LCPs are prepared with the incorporation of mesogenic groups that are responsible for the formation of LC mesophases,such as rod-like(calamitic)and discotic ones,into polymer chains.Depending on where the mesogens are attached,traditionally there are three major categories of LCPs.Main-chain LCPs(MCLCPs)have mesogens in the polymer backbone,while mesogens of side-chain LCPs(SCLCPs)are incorporated as side groups in a polymer with a relatively flexible main chain.In main-chain/side-chain combined LCPs(MCSCLCPs),mesogens are in both the backbone and side chains.Other classes of LCPs include mesogenjacketed LCPs(MJLCPs),dendronized LCPs,and LC networks(LCNs).  相似文献   

12.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

13.
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
The design and preparation of liquid crystalline (LC) block copolymers by use of azo-macroinitiators are outlined. This approach is very versatile and makes it possible to realize diverse architectures of block copolymers, including non-LC/side-chain, non-LC/main-chain and side-chain/main-chain block copolymers. The different blocks were phase separated and underwent their individual phase transitions. In side-chain/main-chain block copolymers different LC mesophases coexisted in equilibrium.  相似文献   

15.
《Liquid crystals》2012,39(12):1827-1842
ABSTRACT

It is a challenge to tailor the phase behavior and phase structure of side-chain liquid crystalline polymers carrying targeted ordered structures and functional properties. In this work, liquid crystalline (LC) properties of cholesterol side-chain polymers without spacer were controlled by molecular weight (Mn) and copolymerization. On the one hand, two series of homopolymers without the spacer, poly (methacrylic acid) cholesterol esters (PCholMCn) and poly (acrylic acid) cholesterol esters (PCholACn) with different Mn and low polydispersity, were achieved by reversible addition-fragmentation chain transfer polymerization. The experiment results indicated that the Mn had little effect on the LC properties of PCholMCn and all homopolymers formed the smectic A phase. However, the phase structures of PCholAC were found to be strongly Mn dependent. The polymers PCholACn were amorphous when the Mn was lower than a critical value of approximately 12103 g/mol. But when the Mn exceeded the critical value, the polymers exhibited smectic A phase. On the other hand, two kinds of random copolymers, poly(cholest-5-en-3-methacrylate)-co-polymethyl acrylate (PCholMC-co-MA) and poly(cholest-5-en-3-acrylate)-co-polymethyl acrylate (PCholAC-co-MA) were synthesized with various composition. The findings suggested that the steric effect of main-chain and the interaction of mesogens would promote the formation of LC phase.  相似文献   

16.
徐懋 《高分子科学》1999,(4):375-378
The morphological features of a side-chain liquid crystalline polymer during the mesophasetransitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogensof three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture wasobserved in the transition temperature range. Similar to main-chain liquid crystalline polymers the transitionprocess of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at localplaces of the old phase matrix and a growth process of the new phase domains.  相似文献   

17.
We report on the phase behavior and microdomain structure of two types of diblock copolymers containing a liquid crystal (LC) block joined to a flexible coil block. Consideration of the symmetry groups of the liquid crystalline phases and of the block copolymer microdomain structures provides a rationale for predicting the possible types of liquid crystalline block copolymer morphologies. Both previously reported and newly discovered structural types are identified. Possible organizational schemes are developed for the mesogens and periodic disclination defects with respect to the intermaterial dividing surfaces separating the liquid crystalline and flexible coil domains. The first type of copolymer investigated has a rod-like LC block whereas the second type copolymer has a side chain LC block. Five different rod-coil diblocks based on poly(hexyl isocyanate-b-styrene) P(HIC-b-S) were synthesized by anionic polymerization. Wavy lamellae, zig-zag and arrowhead microdomain morphologies corresponding to smectic-C and smectic-O structures were observed depending on the composition. These layered phases have the director (PHIC chain axis) tilted at various orientations with respect to the layer normal. Side-chain LC diblocks based on functionalized poly(isoprene-b-styrene) P(I-b-S) were also investigated. These polymers were synthesized using polymer analogous chemistry from P(I-b-S) precursors. Three different mesogenic groups were attached to the PI blocks: one based on biphenyl benzoate and two based on azobenzene. The microdomain structures found for the functionalized poly(isoprene side-chain LC-b-styrene) P(ILC-b-S) diblocks are typical of traditional coil-coil diblocks (lamellae and cylinders). However, these morphologies possess an additional smectic layering of the mesogens within the microdomains of the LC block. In the case of the rod-coil diblocks, the transformation from an initially isotropic state to the final microphase separated solid state occurs via nematic and then smectic liquid crystalline states, whereas for the side-chain LC-coil cases, the microphase separation transition occurs prior to development of orientational order. The long-range microdomain order of LC block-coil block copolymers can extend over very large distances due to the influence of the orientational ordering of the LC block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号