首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
光动力治疗是一种非侵蚀性并具有一定靶向性的肿瘤治疗新方法。 光动力治疗需要光敏剂、光和氧结合产生光动力反应。 光敏剂是光动力治疗的关键和物质基础。 本文概括介绍了已上市的和已被批准进入临床试验中的光敏剂,并根据其分子的骨架结构,将其分为分卟啉类、二氢卟吩(叶绿素)类和菌绿素/酞菁三类。 同时从理想光敏剂应具备特点出发,探讨了研究中的光敏剂和光动力治疗的发展前景。  相似文献   

2.
卟啉类光敏剂在光动力治疗中的应用研究   总被引:3,自引:0,他引:3  
汪凌云  曹德榕 《有机化学》2012,32(12):2248-2264
作为光动力疗法中至关重要的决定性因素,光敏剂的研究受到越来越多的重视.重点综述了多种新型卟啉类化合物、酞菁类化合物和二氢卟吩类化合物的合成及其在光动力治疗中的应用研究.  相似文献   

3.
刘恺  刘进  席超  靳溪 《化学教育》2017,38(6):1-4
光动力治疗日益受到关注。本文综述了光敏剂在光动力疗法领域中的研究进展,包括它的性能改进、作用机理和靶点。并对光动力疗法的发展前景进行了展望。  相似文献   

4.
作为光动力疗法中至关重要的决定性因素,光敏剂的研究受到越来越多的重视.而糖基的引入,可以大大提高光敏剂母体的膜透过性和特异吸收性.从糖基光敏剂的母体结构、糖基光敏剂分子的构效关系、糖基的作用机理以及糖基光敏剂的药物动力学和代谢产物这四个方面对近年来糖基光敏剂的研究现状进行了综述,对其发展趋势进行了展望.  相似文献   

5.
许敏  龙资  易小庆  娄筱叮  夏帆 《分析测试学报》2018,37(10):1147-1157
光动力治疗(PDT)已成为治疗癌症的重要方法之一。传统光敏剂由于存在选择性差、易光漂白等问题,极大地限制了其在临床上的应用。而具有聚集诱导发光特性的荧光分子(AIEgens),在光照条件下能产生活性氧,并能够将肿瘤细胞杀死,具有治疗癌症的功效。此外,AIEgens还具有易制备、荧光特性优异、生物相容性好以及被动靶向效应(EPR效应)等优点,已被广泛应用于光动力治疗领域,并取得了巨大的发展,具有潜在的医学应用价值。该文主要概括并讨论了近5年来AIEgens在光动力治疗中的研究进展,并进行了展望。  相似文献   

6.
郭玲香  李菊平  刘志洋  李全 《化学进展》2022,34(11):2489-2502
光动力治疗是一种基于光敏剂和光照的安全无创性治疗方法,在癌症治疗和杀菌等方面具有广阔的应用前景。光敏剂在光照激发下与氧气作用会生成高反应活性的活性氧。在细胞中过量的活性氧会氧化损伤蛋白质、核酸和脂质等细胞组分,诱导细胞凋亡或坏死。新兴的聚集诱导发光型光敏剂在分子聚集状态下光照激发能发射强的荧光,同时高效地产生活性氧,解决了传统光敏剂在分子聚集时荧光猝灭的问题,易实现成像指导的光动力治疗,近年来备受关注。线粒体作为细胞能量工厂富含氧气,是理想的光动力治疗靶点。本文总结了靶向癌细胞线粒体的聚集诱导发光型光敏剂的分子类型和设计策略,以及其在光动力治疗肿瘤方面的应用。  相似文献   

7.
简单介绍了光动力疗法的作用原理和机制,重点对多氟取代酞菁的几种主要合成方法进行了介绍。  相似文献   

8.
最近, 我们合成了一系列Corrole衍生物, 经过鼻咽癌(Nasopharyngeal carcinoma,NPC) 细胞的体外PDT试验后, 筛选出了一个具有优良PDT活性的Corrole光敏剂. 本文报道该类Corrole光敏剂在PDT中的重原子效应.  相似文献   

9.
取代酞菁光敏剂的光动力疗法研究进展   总被引:1,自引:0,他引:1  
酞菁类化合物作为新一代光敏剂用于光动力学治疗癌症,因表现出良好的光动力活性、靶组织选择性和低毒等优点而备受关注。本文对近几年取代酞菁光敏剂的光动力疗法研究进展作一简单介绍。  相似文献   

10.
光动力治疗因具有低毒、副作用小、抗癌广谱、高选择性等优势, 正吸引着人们越来越多的关注。提高光敏剂的选择性和光毒性已经成为研究的热点。本文简单介绍了光敏剂的发展历程, 并对酞菁类第三代光动力治疗光敏剂的最新研究进展进行了论述。  相似文献   

11.
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that has been applied in studies for the treatment of various diseases. In this context, PDT has been suggested as a new therapy or adjuvant therapy to traditional cancer therapy. The mode of action of PDT consists of the generation of singlet oxygen (¹O2) and reactive oxygen species (ROS) through the administration of a compound called photosensitizer (PS), a light source, and molecular oxygen (3O2). This combination generates controlled photochemical reactions (photodynamic mechanisms) that produce ROS, such as singlet oxygen (¹O2), which can induce apoptosis and/or cell death induced by necrosis, degeneration of the tumor vasculature, stimulation of the antitumor immune response, and induction of inflammatory reactions in the illuminated region. However, the traditional compounds used in PDT limit its application. In this context, compounds of biotechnological origin with photosensitizing activity in association with nanotechnology are being used in PDT, aiming at its application in several types of cancer but with less toxicity toward neighboring tissues and better absorption of light for more aggressive types of cancer. In this review, we present studies involving innovatively developed PS that aimed to improve the efficiency of PDT in cancer treatment. Specifically, we focused on the clinical translation and application of PS of natural origin on cancer.  相似文献   

12.
光动力治疗因具有低毒、副作用小、抗癌广谱、高选择性等优势,正吸引着人们越来越多的关注。提高光敏剂的选择性和光毒性已经成为研究的热点。本文简单介绍了光敏剂的发展历程,并对酞菁类第三代光动力治疗光敏剂的最新研究进展进行了论述。  相似文献   

13.
Small mesoporous silica nanoparticles (MSNs; ca. 37 nm in diameter) have a high loading capacity for a hydrophobic photosensitizer, SiPcCl2 (82.6 % in weight), and excellent endocytosis properties. As a result, the amount of SiPcCl2 being delivered to cancer cells is increased by approximately two orders of magnitude compared to pure SiPcCl2 at the same dosage, and the photodynamic therapy (PDT) efficiency is enhanced by over fourfold. Our method can be widely used to increase the dosage of hydrophobic anti‐cancer drugs in cancer cells and therefore increase the cytotoxicity of the drugs.  相似文献   

14.
In modern medicine, precision diagnosis and treatment using optical materials, such as fluorescence/photoacoustic imaging-guided photodynamic therapy (PDT), are becoming increasingly popular. Photosensitizers (PSs) are the most important component of PDT. Different from conventional PSs with planar molecular structures, which are susceptible to quenching effects caused by aggregation, the distinct advantages of AIE fluorogens open up new avenues for the development of image-guided PDT with improved treatment accuracy and efficacy in practical applications. It is critical that as much of the energy absorbed by optical materials is dissipated into the pathways required to maximize biomedical applications as possible. Intersystem crossing (ISC) represents a key step during the energy conversion process that determines many fundamental optical properties, such as increasing the efficiency of reactive oxygen species (ROS) production from PSs, thus enhancing PDT efficacy. Although some review articles have summarized the accomplishments of various optical materials in imaging and therapeutics, few of them have focused on how to improve the phototherapeutic applications, especially PDT, by adjusting the ISC process of organic optics materials. In this review, we emphasize the latest advances in the reasonable design of AIE-active PSs with type I photochemical mechanism for anticancer or antibacterial applications based on ISC modulation, as well as discuss the future prospects and challenges of them. In order to maximize the anticancer or antibacterial effects of type I AIE PSs, it is the aim of this review to offer advice for their design with the best energy conversion.  相似文献   

15.
A series of zinc(II) phthalocyanines conjugated with an oligolysine chain (n=2, 4, and 8) were synthesized and characterized by using various spectroscopic methods. As shown by using UV/Vis and fluorescence spectroscopic methods, these compounds were nonaggregated in N,N‐dimethylformamide, and gave a weak fluorescence emission and high singlet oxygen quantum yield (ΦΔ=0.86–0.89) as a result of their di‐α‐substitution. They became slightly aggregated in water with 0.05 % Cremophor EL, but they could still generate singlet oxygen effectively. The antimicrobial photodynamic activities of these compounds were then examined against various bacterial strains, including the Gram‐positive methicillin‐sensitive Staphylococcus aureus ATCC 25923 and methicillin‐resistant Staphylococcus aureus ATCC BAA‐43, and the Gram‐negative Escherichia coli ATCC 35218 and Pseudomonas aeruginosa ATCC 27853. Generally, the dyes were much more potent toward the Gram‐positive bacteria. Only 15 to 90 nM of these photosensitizers was required to induce a 4 log reduction in the cell viability of the strains. For Escherichia coli, the photocytotoxicity increased with the length of the oligolysine chain. The octalysine derivative showed the highest potency with a 4 log reduction concentration of 0.8 μM . Pseudomonas aeruginosa was most resistant to the photodynamic treatment. The potency of the tetralysine derivative toward a series of clinical strains of Staphylococcus aureus was also examined and found to be comparable with that toward the nonclinical counterparts. Moreover, the efficacy of these compounds in photodynamic inactivation of viruses was also examined. They were highly photocytotoxic against the enveloped viruses influenza A virus (H1N1) and herpes simplex virus type 1 (HSV1), but exhibited no significant cytotoxicity against the nonenveloped viruses adenovirus type 3 (Ad3) or coxsackievirus (Cox B1). The octalysine derivative also showed the highest potency with an IC50 value of 0.05 nM for the two enveloped viruses.  相似文献   

16.
Peptide‐tuned self‐assembly of functional components offers a strategy towards improved properties and unique functions of materials, but the requirement of many different functions and a lack of understanding of complex structures present a high barrier for applications. Herein, we report a photosensitive drug delivery system for photodynamic therapy (PDT) by a simple dipeptide‐ or amphiphilic amino‐acid‐tuned self‐assembly of photosensitizers (PSs). The assembled nanodrugs exhibit multiple favorable therapeutic features, including tunable size, high loading efficiency, and on‐demand drug release responding to pH, surfactant, and enzyme stimuli, as well as preferable cellular uptake and biodistribution. These features result in greatly enhanced PDT efficacy in vitro and in vivo, leading to almost complete tumor eradication in mice receiving a single drug dose and a single exposure to light.  相似文献   

17.
光动力治疗(Photodynamic therapy,PDT)是利用光敏剂在光照下促使分子氧转为具有细胞毒性的活性氧,从而达到破坏靶细胞和靶组织效应的一种治疗手段。可激活光敏剂(Activatable photosensitizers,aPSs)是指事先屏蔽了光敏效应的光敏剂,只在特定因素下,如与肿瘤相关的特异性酶、酸性pH、核酸等的激活下,光敏剂转为激活状态,从而发挥诊断或者治疗的作用。可激活光敏剂由于具有更高的选择性而备受瞩目,成为医用光敏剂领域的研究前沿热点。本文将总结和分析近年来可激活抗癌光敏剂的研究现状和构效关系,以期为后续的相关研究提供参考。  相似文献   

18.
The viable use of photodynamic therapy (PDT) in cancer therapy has never been fully realized because of its undesirable effects on healthy tissues. Herein we summarize some physicochemical factors that can make PDT a more viable and effective option to provide future oncological patients with better‐quality treatment options. These physicochemical factors include light sources, photosensitizer (PS) carriers, microwaves, electric fields, magnetic fields, and ultrasound. This Review is meant to provide current information pertaining to PDT use, including a discussion of in vitro and in vivo studies. Emphasis is placed on the physicochemical factors and their potential benefits in overcoming the difficulty in transitioning PDT into the medical field. Many advanced techniques, such as employing X‐rays as a light source, using nanoparticle‐loaded stem cells and bacteriophage bio‐nanowires as a photosensitizer carrier, as well as integration with immunotherapy, are among the future directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号