首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu CY 《Electrophoresis》2001,22(4):612-628
An overview of the most recent developments in column technology employed in capillary electrophoresis (CE) and capillary electrochromatography (CEC), mainly for the separation of small molecules and ions, is presented. Particular emphasis is laid on permanent coating. The wall modification methods in CE include covalent modification, adsorbed coatings and polymeric coatings, while those in CEC include packed columns, open-tubular columns and fritless columns. A short discussion on the characterization and selectivity of the bonded phases is also given.  相似文献   

2.
A review is presented on the current state of the art and future trends in the development of sol-gel stationary phases for capillary electrochromatography (CEC). The design and synthesis of stationary phases with prescribed chromatographic and surface charge properties represent challenging tasks in contemporary CEC research. Further developments in CEC as a high-efficiency liquid-phase separation technique will greatly depend on new breakthroughs in the area of stationary phase development. The requirements imposed on CEC stationary phase performance are significantly more demanding compared with those for HPLC. The design of CEC stationary phase must take into consideration the structural characteristics that will provide not only the selective solute/stationary phase interactions leading to chromatographic separations but also the surface charge properties that determine the magnitude and direction of the electroosmotic flow responsible for the mobile phase movement through the CEC column. Therefore, the stationary phase technology in CEC presents a more complex problem than in conventional chromatographic techniques. Different approaches to stationary phase development have been reported in contemporary CEC literature. The sol-gel approach represents a promising direction in this important research. It is applicable to the preparation of CEC stationary phases in different formats: surface coatings, micro/submicro particles, and monolithic beds. Besides, in the sol-gel approach, appropriate sol-gel precursors and other building blocks can be selected to create a stationary phase with desired structural and surface properties. One remarkable advantage of the sol-gel approach is the mild thermal conditions under which the stationary phase synthesis can be carried out (typically at room temperature). It also provides an effective pathway to integrating the advantageous properties of organic and inorganic material systems, and thereby enhancing and fine-tuning chromatographic selectivity of the created hybrid organic-inorganic stationary phases. This review focuses on recent developments in the design, synthesis, characterization, properties, and applications of sol-gel stationary phases in CEC.  相似文献   

3.
Xie C  Fu H  Hu J  Zou H 《Electrophoresis》2004,25(23-24):4095-4109
This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mechanisms. Electrochromatographic separations of polar solutes, peptides, and basic pharmaceuticals on polar stationary phases are presented.  相似文献   

4.
Synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes from the inside of silica capillaries by surface-initiated atom transfer radical polymerization (ATRP) yields unique stationary phases for open-tubular capillary electrochromatography (OT-CEC). Although PHEMA brushes have only a small effect on the separation of a set of phenols and anilines, derivatization of PHEMA with ethylenediamine (en) allows baseline resolution of several anilines that co-elute from bare silica capillaries. Derivatization of PHEMA with octanoyl chloride (C8-PHEMA films) affords even better resolution in the separation of a series of phenols and anilines. Increasing the thickness of C8-PHEMA coatings by a factor of 2 enhances resolution for several solute pairs, presumably because of an increase in the effective stationary phase to mobile phase volume ratio. Thus, this work demonstrates that thick polymer brushes provide a tunable stationary phase with a much larger phase ratio than is available from monolayer wall coatings. Through appropriate choice of derivatizing reagents, these polymer brushes should allow separation of a wide range of neutral molecules as well as compounds with similar electrophoretic mobilities.  相似文献   

5.
Qin F  Xie C  Yu Z  Kong L  Ye M  Zou H 《Journal of separation science》2006,29(10):1332-1343
Monolithic materials have become a well-established format for stationary phases in the field of capillary electrochromatography. Four types of monoliths, namely particle-fixed, silica-based, polymer-based, and molecularly imprinted monoliths, have been utilized as enantiomer-selective stationary phases in CEC. This review summarizes recent developments in the area of monolithic enantiomer-selective stationary phases for CEC. The preparative procedure and the characterization of these columns are highlighted. In addition, the disadvantages and limitations of different monolithic enantiomer-selective stationary phases in CEC are briefly discussed.  相似文献   

6.
Hilder EF  Svec F  Fréchet JM 《Electrophoresis》2002,23(22-23):3934-3953
This review summarizes the contributions of a number of groups working in the rapidly growing area of monolithic columns for capillary electrochromatography (CEC), with a focus on those prepared from synthetic polymers. Monoliths have quickly become a well-established stationary phase format in the field of CEC. The simplicity of their in situ preparation method as well as the good control over their porous properties and surface chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. A wide variety of approaches as well as materials used for the preparation of the monolithic stationary phases are detailed. Their excellent chromatographic performance is demonstrated by numerous separations of different analytes.  相似文献   

7.
8.
During the past decades, research has been performed to enhance selectivity in CE by introducing different types of additives into the electrolyte. Research concerning this has taken many directions, especially during the last 5 years. A promising technique, which benefits from no packing or frits, is to use nanoparticles as the pseudostationary phase (PSP) in CEC. PSPs have the advantage of introducing a novel interaction phase for every analysis, which greatly simplify column exchange and circumvent contamination inherited from complex mixtures, e.g., biological samples. The field of nanoparticle-based PSPs used in CEC is covered in this review. The term CEC will be used consequently throughout this review, although some authors used the term EKC to categorize their work. Important requirements for the nanoparticles used and possible reasons for band broadening will be discussed. Applications with silica nanoparticles, polymer nanoparticles, molecularly imprinted polymer nanoparticles, gold nanoparticles, dendrimers, and polymeric surfactants as PSP will also be discussed.  相似文献   

9.
A method is described for the synthesis of rigid, macroporous polymers (monoliths) to be used as stationary phases in capillary electrochromatography (CEC). The procedure reproducibly results in columns with good mechanical and chemical stability. Once the procedure was optimized, it yielded the desired CEC columns in nearly 100% of the cases. The batch-to-batch standard deviation of the migration of the electroosmotic flow (EOF) marker for nine randomly chosen columns was 5%. The polymerization is carried out inside the capillary, an aqueous phase is used as solvent. Monomers based on acrylamides with varying hydrophilicity were used to introduce the interactive moieties together with piperazine diacrylamide as cross-linker and vinylsulfonic acid as provider of the charged, EOF-producing moieties. The pore size of the monoliths was adjusted by adding varying amounts of ammonium sulfate to the reaction mixture. In this manner, the average pore size of a given monolith could be reproducibly adjusted to values ranging from 50 nm to 1.3 microm. The procedure was optimized for four particular types of monoliths, which differed in hydrophobicity. The latter was adjusted by introducing suitable co-monomers, such as alkyl chain-bearing molecules, into the monolithic structure. Attempts to systematically investigate the chromatographic behavior of the monolithic stationary phases were made, using a model mixture of aromatic compounds as sample. The standard deviations for the run-to-run reproducibility of the retention times for unretained and retained analytes were <1.5%. Flat Van Deemter curves were measured even at elevated flow-rates (2 mm/s). Plate heights between 10 and 15 microm were measured in this range. The retention order was taken as the principal indication for the chromatographic mode. The separation was found to be governed neither by pure reversed-phase nor by pure normal-phase chromatography, even on monoliths, where large amounts of C6 ligands had been introduced.  相似文献   

10.
A monolithic stationary phase is the continuous unitary porous structure prepared by in situ polymerization or consolidation inside the column tubing and, if necessary, the surface is functionalized to convert it into a sorbent with the desired chromatographic binding properties [J. Chromatogr. A 855 (1999) 273]. Monolithic stationary phases have attracted considerable attention in liquid chromatography and capillary electrochromatography in recent years due to their simple preparation procedure, unique properties and excellent performance, especially for separation of biopolymers. This review summarizes the preparation, characterization and applications of the monolithic stationary phases. In addition, the disadvantages and limitations of the monolithic stationary phases are also briefly discussed.  相似文献   

11.
Liu Z  Wu R  Zou H 《Electrophoresis》2002,23(22-23):3954-3972
This review surveys the recent progress in the adsorbed stationary phases for capillary electrochromatography (CEC). Adsorption-based methods for preparation of stationary phase are novel approaches in CEC, which allow rapid and facile preparing stationary phases with desirable selectivity onto an open-tubular fused-silica capillary, a bare-silica or ion-exchange packed column or a monolithic silica or polymer column. A variety of adsorbing agents have been developed as adsorbed stationary phases, including ionic long-chain surfactant, protein, peptide, amino acid, charged cyclodextrin (CD), basic compound, aliphatic ionene, and ion-exchange latex particle. The adsorbed stationary phases have been applied to separation of neutral, basic and acidic organic compounds, inorganic anions and enantiomers. They have also been applied to on-line sample concentration, fast separation and study of the competitive binding of enantiomers with protein.  相似文献   

12.
Summary Polymerisation of bicontinuous microemulsions yields porous monolithic structures with well defined pore sizes that are potentially suitable for use as stationary phases for capillary electrochromatography (CEC). A variety of pore sizes can be achieved by altering the composition of the microemulsion, which typically consists of butyl methacrylate (BMA) and ethylene glycol dimethacrylate (EGDMA) as the polymerisable oil phase. The aqueous phase consists of water, a surfactant (sodium dodecyl sulphate, SDS) and a co-surfactant (1-propanol). 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) is also added to provide charges along the polymer backbone to allow electroosmotic flow (EOF) to occur. SEM analysis shows that in-situ polymerisation yields a monolithic structure with a porous topography. Investigations have shown that these monoliths are easy to prepare, robust and suitable for the separation of phthalates. They generate higher linear velocities than are achieved using the silica based HPLC packings normally used for CEC.  相似文献   

13.
田耘  曹小敏  张琪  曾昭睿 《色谱》2009,27(6):737-744
超分子化学是一门研究分子间特定识别能力的新兴学科,超分子化合物所具有的主-客体识别能力为高选择性的色谱分离提供了广阔的发展前景。毛细管电色谱是近年来发展起来的一种高效、高选择性的微分离技术,电色谱固定相是该技术的核心部分,一直是研究的热点。本文综述了1998年以来环糊精、杯芳烃、冠醚以及大环多胺等4种超分子化合物用作毛细管电色谱固定相的研究进展情况。  相似文献   

14.
Several chemically bonded silicas with C18 groups were examined with respect to electroosmotic flow (EOF) velocities under CEC conditions. Stationary phases with low hydrophobic selectivity generally provided high EOFs. The stationary phases prepared by using octadecyltrichlorosilane showed greater EOF than those from octadecyldimethylchlorosilane. Restricted-access reversed-phase (RARP) packing materials having C18 groups inside the pores and silanols on the external surfaces showed higher EOF than monomeric C18 phases with similarly high hydrophobic selectivity. The RARP-type structure having silanols at the external surface seems to be effective for increasing EOF while maintaining the hydrophobic character of the solute binding sites.  相似文献   

15.
Capillary electrochromatography (CEC) requires stationary phases that enable appropriate electroosmotic propel under various conditions. Analyte retention can be controlled through hydrophobic or electrostatic interaction with the packing material. The development and characterization of new strong anion-exchange materials with additional hydrophobic moieties (SAX/C18 mixed-mode phases) is described. The synthesis was based on polymer encapsulation of porous silica. The phases were systematically characterized by means of elemental analyses, HPLC frontal analyses and CEC experiments. The studies focused on the influence of various parameters (e.g., pH, kind of buffer, capillary wall) on the electroosmotic flow (EOF). Phases with high anion-exchange capacity generated a fast and constant EOF over a wide pH range. Long-time stability of EOF and hydrophobic retention under CEC conditions were demonstrated within the course of 100 consecutive injections. The applicability of the SAX/C18 phases in appropriate buffer systems is demonstrated for neutral, acidic and basic compounds.  相似文献   

16.
Monolithic columns for capillary electrochromatography are receiving quite remarkable attention. This review summarizes results excerpted from numerous papers concerning this rapidly growing area with a focus on monoliths prepared from synthetic polymers. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. Therefore, they are now a well-established stationary phase format in the field of capillary electrochromatography. A wide variety of synthetic approaches as well as materials used for the preparation of the monolithic stationary phases are presented in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds and different chromatographic modes.  相似文献   

17.
The applicability of capillary electrochromatography (CEC) using packed capillary column to enantiomer separations was investigated. As chiral stationary phases, OD type packing materials of 5 and 3 microm particle diameters, originally designed for conventional high-performance liquid chromatography (HPLC) were employed. The chiral packing materials were packed by a pressurized method into a 100 microm I.D. fused-silica capillary. Several racemic enantiomers, such as acidic, neutral and basic drug components, were successfully resolved, typically by using acidic or basic solutions containing acetonitrile as mobile phases. The separation efficiencies for some enantiomers in the chiral CEC system using the 5 microm OD type packing were superior to those obtained in HPLC using chiral packings. The plate heights obtained for several enantiomers were 8-13 microm or the reduced plate height of 1.6-2.6, which indicates the high efficiency of this chiral CEC system.  相似文献   

18.
Fused-silica capillaries (100 microm ID) were packed with the (3R, 4S)-Whelk-O chiral stationary phase (CSP) bonded on 3.0 microm silica particles. The enantiomers of 41 neutral analytes containing stereogenic centers, axes or planes were examined by packed capillary electrochromatography. More than 30 of these were cleanly resolved, owing to the selectivities and efficiencies afforded by this CSP. High reproducibility with no indication of diminished performance was observed using the same capillary for hundreds of runs (including intermediate change of the buffer system) over a period of several weeks. Acetate, 2-(N-morpholino)ethanesulfonic acid, or phosphate buffers, each modified with either acetonitrile or methanol, were used as mobile phases. The influence of buffer concentration, modifier amount, temperature, applied voltage, and pH on performance of the brush-type CSP was investigated.  相似文献   

19.
Z Liu  H Zou  M Ye  J Ni  Y Zhang 《Electrophoresis》1999,20(14):2891-2897
A novel method based on the adsorption of positively charged compounds on the wall of a fused-silica capillary was applied to prepare stationary phases for open tubular capillary electrochromatography (OTCEC). The positively charged substances including cationic surfactant such as cetyltrimethylammonium bromide (CTAB) and basic chiral selectors such as protein, peptide and amino acid were physically adsorbed onto the capillary wall under specially selected conditions. The adsorbed stationary phase of CTAB was used to separate neutral compounds, while the others were used for chiral separations. The run-to-run reproducibility of retention time was rather good with relative standard deviation (RSD) values of less than 2.3%. The separation efficiency was excellent with the highest theoretical plate number of up to 590000/m and the average one above 250000/m. Stored at 2-8 degrees C in the refrigerator, the adsorbed stationary phase can last at least one month. It was observed that the UV spectra for the enantiomers are significantly different due to the diastereomeric interactions of enantiomers with the chiral stationary phase in the detection window. With the use of the same capillary, the same instrument, and the same mobile phase, the superiority of OTCEC over open tubular liquid chromatography (OTLC) and capillary zone electrophoresis (CZE) was illustrated.  相似文献   

20.
Capillary electrochromatography requires the deposition of a stationary phase inside the capillary. In this paper the sol-gel method is proposed for this purpose. The gels were prepared externally and injected into a fused-silica capillary, where anchorage to the capillary wall was possible through condensation reactions between the silanol groups of the capillary wall and the residual silanol groups the gel. Contrary to a commonly used practice, alkaline pretreatment of the inner capillary wall prior to the introduction and anchoring of the gel was found to be only marginally effective in improving the mechanical stability of the column. The influence of various parameters, such as the pH, the water content, the presence of alcohol (ethanol) on the formation of tetraethoxysilane (TEOS)-n-octyltriethoxysilane (C8-TEOS) hybrid gels of varied composition is discussed. The pH and the amount of water present were found to be the determining factors in the preparation of a stable gel with the desired mechanical and chromatographic properties. By carrying out the gel formation at 80 degrees C, capillary columns could be produced in 2.5 h. While an acidic pH was required during (external) gel formation, subsequent treatment of the gel inside the capillary with an alkaline solution ('aging') was found to improve separation and stationary phase capacity significantly. The capillary columns were subsequently used to separate a mixture of polycyclic aromatic hydrocarbons in less than 3 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号