首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled monolayers of azobenzene-containing thiols on smooth Au(1 1 1) surfaces were studied by gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS). By adsorption of colloidal Au nanoparticles on top of the organic adlayer highly reproducible spectra with strongly enhanced intensities are obtained. The observed bands indicate a trans conformation of the azobenzene moieties and are in agreement with structural data for the molecular layer. A characteristic dependency on the terminal and the spacer groups of the molecules is found. Samples prepared during illumination with UV light show pronounced spectral differences that can be attributed to azobenzene in cis conformation.  相似文献   

2.
In this study, two perfluoroalkyl azobenzene trichlorosilanes were synthesized and then characterized by Fourier transform infrared spectroscopy (FT-IR), 1H NMR, and 19F NMR. Subsequently, these fluorine containing trichlorosilanes were applied to form self-assembled monolayers (SAMs) on silicon substrates by the method of chemical deposition in liquid phase. The optothermal responsively isomerization of the azobenzene was achieved via UV irradiation and heat treatment. The surface structures of the SAMs were investigated by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy (AFM). The results showed that the thermal migration of the terminal fluoroalkyl groups promoted the isomerization of the azo-groups. Moreover, the reversible contact angles of the SAMs demonstrated a good reversibility of surface wettability, which was consistent with the optothermal responsive isomerization of the azo-groups.  相似文献   

3.
Homogeneous and mixed adlayers composed of an alkanethiol (1-octadecanethiol, ODT) and a peptide (CGISYGRKKRRQRRR) on GaAs(100) were formed in two different solvent systems: phosphate-buffered saline (PBS) and N,N-dimethylformamide (DMF). The chemical composition of each adlayer was characterized by X-ray photoelectron spectroscopy (XPS). The data showed that the makeup of the adlayer and its stability largely depends on the solvent used. Angle-resolved XPS also revealed that the adlayer thickness and tilt angles were different from values obtained from ellipsometry measurements and vastly varied between the two solvents used. The coverage data extracted from the XPS measurements indicated that homogeneous adlayers of peptide in PBS buffer form a multilayered film. Homogeneous alkanethiol adlayers exhibited monolayer coverage under all solvent treatments. Coadsorbed layers containing both alkanethiol and peptide have fractional monolayer coverage in both solvents.  相似文献   

4.
In order to clarify the chemical adsorption properties of alkoxysilyl compounds to metal‐oxide surface quantitatively and to obtain the information on the reaction conditions for the efficient surface modification, the chemical surface modifications of nano‐porous alumina membranes (NPAMs) by typical alkoxysilyl compounds of 4‐(triethoxysilyl)azobenzene, 4‐(diethoxyphenylsilyl)azobenzene, 4‐(ethoxydiphenylsilyl)azobenzene and 4‐(methoxydimethylsilyl)azobenzene were examined. The chemical surface modifications were performed by immersing NPAMs into the solutions of the alkoxysilylazobenzenes. Especially for 4‐(triethoxysilyl)azobenzene, the modification was investigated precisely by changing the solvent, temperature, concentration and water content of the solutions to reveal the effects of the reaction conditions on the adsorption property of alkoxysilyl compounds to metal oxides. The NPAMs having chemically modified surface were prepared successfully by the immersing method, and the alkoxysilylazobenzenes were confirmed to be bound on the NPAM surface through Si? O? Al bonds, which were indicated to be formed mainly by the direct condensation reaction between the alkoxysilyl groups of the azobenzenes and the hydroxy groups on the NPAM surface. The amounts of the azobenzenes adsorbed on the NPAM surface were estimated quantitatively by a visible absorption spectroscopy, and the results showed that the solutions with non‐polar solvents, higher temperatures and higher concentrations are suitable for the efficient surface modification. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The main goal of this work was the synthesis of new azo-functionalized block copolymers (BCP) from epoxidized poly(styrene-b-butadiene-b-styrene) modified with azobenzene groups by one-step facile reaction between the epoxy groups and an azo-amine. The epoxy/amine reaction was verified by Fourier transform infrared spectroscopy. Additionally, we studied the effect of covalent attachment of the azobenzene moieties by analyzing the morphology and the optical anisotropic response of the resulting azo-containing BCP, with respect to solution mixing of the azobenzene as a guest in the BCP host without chemical bonding. Self-assembly of all modified BCP resulted in phase-separated morphologies on the nanometer scale. Nonetheless, segregation of azobenzene aggregates onto the BCP surface was observed in guest–host systems. In relation to the optical anisotropic behaviour of the resulting materials, two distinct optical responses were observed depending on the existence or not of covalent attachment of the azo-chromophores to the BCP.  相似文献   

6.
The platform approach for preparation of molecular adlayers with freestanding functional groups was extended to systems on the basis of the trioxatriangulenium ion. Self-assembled monolayers of these compounds were prepared on Au(111) surfaces and characterized by scanning tunneling microscopy, revealing highly-ordered structures.  相似文献   

7.
The use of a multiple attachment sites strategy is considered in order to improve the stability of monomolecular adlayers. The hypothesis was tested in the case of PEG-ylated compounds carrying phosphonate groups, known for their affinity toward titanium oxide surfaces. As a result, a new class of co- and terpolymers were synthesized by free-radical polymerization of three different monomers: dialkyl(methacryloyloxyalkyl)phosphonates, PEG methyl ether methacrylate, and/or butyl methacrylate monomers. Adlayers were formed following a simple dip-and-rinse protocol using diluted aqueous polymer solutions and were characterized by evaluating their thicknesses with variable angle spectroscopic ellipsometry (VASE) and their elemental compositions with X-ray photoelectron spectroscopy (XPS). The same techniques were used to determine changes of the adlayer as a function of exposure to electrolytes at different pH values and to monitor nonspecific protein adsorption upon serum exposures. The results indicated that the poly(alkyl-phosphonate)-based adlayers combine multiple site attachment of phosphonic groups and presentation of PEG side chains to the aqueous environment, resulting in both improved stability over a wide pH range in comparison to the tested reference surfaces and excellent resistance to protein adsorption when exposed to full human serum.  相似文献   

8.
杨婷  夏常磊  刘和文 《应用化学》2012,29(2):161-165
偶氮苯树枝状分子通过中心羧基与金或者石英基体表面的氨基进行酰胺化反应得到树枝状分子单分子层修饰的表面,利用红外反射 吸收光谱(IRRAS)、UV-Vis和Raman光谱法研究了单分子层的结构和性能,利用椭偏谱法来测量四代树枝状(G-4)单分子层在不同异构化形态的分子层厚度,其中反式构象的单分子层厚度为(2.38±0.09) nm,顺式构象厚度为(1.88±0.08) nm。 利用表面等离子体共振(SPR)研究不同形态下G-4单层与不同等电点的蛋白质之间的相互作用关系,结果表明,G-4单层为负电位表面,能够吸附正电位的蛋白质,而且当树枝状单分子层形态从反式变为顺式时,表面电位变为更负,能吸附更多正电位的蛋白质。  相似文献   

9.
Azobenzene-containing compounds were covalently attached onto Si(111) surfaces via Si-O linkages using a two-step procedure. The modified Si(111) surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy measurements. The monolayer surface showed preferably chemical stability. Switchable photoisomerizability of azobenzene molecules on these modified surfaces was observed in response to alternating UV and visible light exposure. The measured conductivity showed distinct difference with trans and cis forms of azobenzene compounds on as-modified Si(111) surfaces.  相似文献   

10.
Organic/inorganic hybrid multilayer films with noncentrosymmetrically orientated azobenzene chromophores were fabricated by the sequential deposition of ZrO2 layers by a surface sol-gel process and subsequent layer-by-layer (LbL) adsorption of the nonlinear optical (NLO)-active azobenzene-containing polyanion PAC-azoBNS and poly(diallyldimethylammonium chloride) (PDDA). Noncentrosymmetric orientation of the NLO-active azobenzene chromophores was achieved because of the strong repulsion between the negatively charged ZrO(2) and the sulfonate groups of the azobenzene chromophore in PAC-azoBNS. Regular deposition of ZrO(2)/PAC-azoBNS/PDDA multilayer films was verified by UV-vis absorption spectroscopy and quartz crystal microbalance measurements. Both UV-vis absorption spectroscopy and transmission second harmonic generation (SHG) measurements confirmed the noncentrosymmetric orientation of the azobenzene chromophores in the as-prepared ZrO2/PAC-azoBNS/PDDA multilayer films. The square root of the SHG signal (I(2omega)(1/2)) increases with the increase of the azobenzene graft ratio in PAC-azoBNS as the number of deposition cycles of the ZrO(2)/PAC-azoBNS/PDDA films remains the same, while the second-order susceptibility chi(zzz)(2) of the film decreases with the increase of the azobenzene graft ratio. Furthermore, the present method was successfully extended to realize the noncentrosymmetric orientation of azobenzene chromophores in multilayer films when small organic azobenzene compounds with carboxylic acid and/or hydroxyl groups at one end and sulfonate groups at the other end were used. The present method was characterized by its simplicity and flexibility in film preparation, and it is anticipated to be a facile way to fabricate second-order nonlinear optical film materials.  相似文献   

11.
hoto-responsive azobenzene (ABZ) derivatives with different end groups (R) were employed to construct selfassembled monolayers (SAMs) on silicon substrates. The SAMs based on hydrophilic (4-(4'-aminophenylazo) benzoic acid, ABZ-COOH) show excellent reversible photoswitching performance with a large contact angle change of 35° under optimized process.  相似文献   

12.
Light-induced transitions between the trans and cis isomer of triazatriangulenium-based azobenzene derivatives on Au(111) surfaces were observed directly by scanning tunneling microscopy, allowing atomic-scale studies of the photoisomerization kinetics. Although the azobenzene units in these adlayers are free-standing and spaced at uniform distances of 1.26 nm, their photoswitching depends on the isomeric state of the surrounding molecules and, specifically, is accelerated by neighboring cis isomers. These collective effects are supported by ab initio calculations indicating that the electronic excitation preferably localizes on the n–π* state of trans isomers with neighboring cis azobenzenes.  相似文献   

13.
Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(l-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL–PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL–PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL–PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL–PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL–PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has been exposed to human serum.
Figure
?  相似文献   

14.
Light‐induced transitions between the trans and cis isomer of triazatriangulenium‐based azobenzene derivatives on Au(111) surfaces were observed directly by scanning tunneling microscopy, allowing atomic‐scale studies of the photoisomerization kinetics. Although the azobenzene units in these adlayers are free‐standing and spaced at uniform distances of 1.26 nm, their photoswitching depends on the isomeric state of the surrounding molecules and, specifically, is accelerated by neighboring cis isomers. These collective effects are supported by ab initio calculations indicating that the electronic excitation preferably localizes on the n–π* state of trans isomers with neighboring cis azobenzenes.  相似文献   

15.
The structure, dynamics, and energetics of methanol adlayers on the nonpolar ZnO(1010) surface have been studied by He-atom diffraction (HAS), high-resolution electron energy loss spectroscopy (HREELS), thermal desorption spectroscopy (TDS), and density functional calculations. The experimental and theoretical data consistently show that at temperatures below 357 K methanol forms an ordered adlayer with a (2 × 1) periodicity and a coverage of one monolayer in which half of the methanol molecules are dissociated. The ordering of the methanol molecules is governed by repulsive interactions between the methyl groups of the methanol molecules. This repulsive interaction is also responsible for the formation of a second, low-density phase at higher temperatures with half monolayer coverage of undissociated methanol which is stable up to 440 K.  相似文献   

16.
Novel photosensitive azopolymer brushes were synthesized via surface initiated atom transfer radical polymerization using initiator self‐assembled on Au surface. The chemical structures of azobenzene derivatives were confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). The surface morphology of azopolymers via atom transfer radical polymerization (ATRP) for different time was investigated by atomic force microscopy (AFM). Additionally, the photoisomerization of azopolymer was measured by ultraviolet‐visible spectroscopy (UV‐Vis). The results indicate that such azopolymers can undergo trans‐cis‐trans photoisomerization efficiently by photo‐irradiation with UV light. Furthermore, this photoisomerization property could also induce the reversible adsorption of bovine serum albumin (BSA) adsorption on azopolymer brush surfaces. This adsorption kinetics of the reversible process can be measured by surface plasmon resonance (SPR) spectroscopy in situ. It suggests that the protein biochips could be regenerated safely by UV irradiation rather than by being rinsed with chemical reagents.  相似文献   

17.
A series of polymers with 4-perfluoroalkyl-modified azobenzene side groups was investigated for its light-induced changes in surface properties. The ultraviolet (UV) light activated trans to cis isomerization of the azobenzene group, and the influence of molecular order and orientation on this process were studied using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and water contact angle measurements. Light-induced molecular reorganization in the near-surface region was studied by NEXAFS using in situ UV irradiation of polymer thin films. Differential scanning calorimetry and wide-angle X-ray scattering studies showed that sufficiently long fluoroalkyl groups formed well-ordered smectic mesophases in the bulk, as well as on the surface, which was evidenced by NEXAFS. The disruption of mesogen packing by photoisomerization was found to be influenced by the fluoroalkyl segment length. Surfaces with perfluorohexyl and perfluorooctyl groups that showed high orientational order were also highly resistant to light-induced changes. In such cases, the trans-cis isomerization resulted in greater lowering of the azobenzene phenyl ring order parameters than the perfluoroalkyl order parameters. UV exposure caused reorientation of the phenyl rings of the azobenzene group, but the terminal perfluoroalkyl segments remained more or less ordered.  相似文献   

18.
以4,4'-二羟乙氧基偶氮苯(BHEAZO)为引发剂引发对二氧环己酮(PDO)开环聚合,与羧基化的单羟甲基聚乙二醇(mPEG)偶联,制备了具有光响应性的两亲性三嵌段共聚物mPEG-BHEAZO-PPDO-mPEG,并对其纳米聚集体的光响应行为进行了研究.采用紫外可见光谱(UV-Vis Spectroscopy)研究了纳米聚集体水溶液的吸光度随着光照时间的变化;用动态光散射(DLS)研究了辐射波长对纳米聚集体的粒径及粒径分布的影响;结合透射电子显微镜(TEM)的研究结果,提出了对纳米聚集体在不同波长光照下聚集行为改变的机理,即反式结构共平面的共轭体系更易形成稳定的低能级电子离域状态,从而使得纳米聚集体之间通过π-π堆积作用形成微聚集现象.  相似文献   

19.
用偏振紫外光谱研究了 4种带有不同端基的侧链型偶氮聚电解质静电逐层自组装膜中偶氮生色团的初始取向 .讨论了不同的端基对偶氮生色团在自组装膜中初始取向的影响 .进一步探讨了偶氮聚电解质自组装膜的结构特点 .研究表明 ,侧链型偶氮聚电解质自组装膜中偶氮生色团普遍存在一定程度的沿面取向 .偶氮生色团所带端基的类型对其在自组装膜中的取向程度有较大的影响 ,这主要取决于偶氮生色团与聚阳离子基底的电荷相互作用和极性相互作用等 .对偶氮生色团在水溶液中能形成H 聚集体的自组装膜来说 ,H 聚集体对生色团取向也有一定的影响 .结果表明 ,在制备需控制生色团取向性的自组装膜时 ,要考虑生色团上的不同端基对取向的影响  相似文献   

20.
We present a combined in situ Fourier transform infrared reflection-absorption spectroscopy and voltammetric study of the reduction of saturated and subsaturated NO adlayers on Pt(111) and Pt(110) single-crystal surfaces in acidic media. The stripping voltammetry experiments and the associated evolution of infrared spectra indicate that different features (peaks) observed in the voltammetric profile for the electrochemical reduction of NO adlayers on the surfaces considered are related to the reduction of NO(ads) at different adsorption sites and not to different (consecutive) processes. More specifically, reduction of high- and intermediate-coverage (ca. 0.5-1 monolayers (ML)) NO adlayers on Pt(110) is accompanied by site switching from atop to bridge position, in agreement with the ultra-high-vacuum data. On Pt(111) linearly bonded (atop) NO and face-centered cubic 3-fold-hollow NO species coexist at high coverages (0.25-0.5 ML) and can be reduced consecutively and independently. On Pt(111) and Pt(110) electrodes, linearly bonded NO species are more reactive than multifold-bonded NO species. Both spectroscopic and voltammetric data indicate that ammonia is the main product of NO(ads) reduction on the two surfaces examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号