首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-assembled monolayers (SAMs) of N-(3-triethoxysilylpropyl)-4-hydroxybutyramide were prepared on silicon oxide on silicon (Si/SiO(2)). Initial silane adsorption and high-temperature annealing led to a stable base monolayer with many large over-lying islands of disordered multilayers as a result of the non-self-limited growth process. The disordered multilayers were hydrolyzed and subsequently removed by CO(2) snow treatment. The resulting films were one monolayer thick as measured by ellipsometry. Atomic force microscopy, attenuated total reflection Fourier transform infrared spectroscopy, and contact angle analysis showed that the films were composed of monolayers with full and uniform surface coverage rather than nonuniform coverage by islands or patches of multilayers. Monolayers of octadecyltrichlorosilane were also prepared by multilayer removal via CO(2) treatment, showing the general applicability of the technique toward siloxane SAMs. We believe that CO(2) is an excellent solvent for weakly bound and hydrolyzed molecules that compose multilayers, and this ability to prepare near-perfect monolayer films from imperfect ones allows for less stringent formation conditions.  相似文献   

2.
We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures. On the contrary, in solution preparation, dense phases can only be obtained on GaAs for long alkanethiols and after lengthy immersions. The C6 layer has a first desorption peak at 325 K, where partial desorption of the alkanethiol molecules takes place. Fits to the desorption curves result in a 1 eV adsorption energy, in agreement with a chemisorption process. Increasing the temperature to 500 K results in the S-C bond scission with only S remaining on the GaAs(110) surface. The possibility of forming dense, short-alkanethiol layers on semiconductor surfaces from the vapor phase could have a strong impact for a wide range of self-assembled monolayer applications, with only minimal care not to surpass room temperature once the layer has been formed in order to avoid molecular desorption.  相似文献   

3.
The formation and molecular structure of self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been characterized by reflection adsorption infrared spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption spectroscopy, scanning tunneling microscopy, and low energy electron diffraction. It is demonstrated that highly ordered monolayer films are formed upon immersion, but their quality depends critically on the choice of solvents and rinsing conditions. The saturated monolayer is characterized by a closed packed arrangement of upright standing molecules forming a (2 x 4)rect unit cell. At about 450 K a partial desorption takes place and the remaining molecules form a dilute (4 x 2)-phase with an almost planar adsorption geometry, while further heating above 520 K causes a thermally induced fragmentation. According to their different densities both phases reveal very diverse chemical reactivities. Whereas the saturated monolayer is stable and inert under ambient conditions, the dilute phase does not warrant any protection of the sulfur headgroups which oxidize rapidly in air.  相似文献   

4.
The adsorption of L-histidine on clean and oxygen-covered Cu(110) surfaces has been studied by soft X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The valence band spectra, carbon, nitrogen and oxygen 1 s XPS and N K edge absorption spectra were measured for submonolayer, monolayer, and multilayer films. The spectra provide a detailed picture of the electronic structure and adsorption geometry at each coverage. In the monolayer, the histidine molecules are randomly oriented, in contrast to the submonolayer regime, where the molecules are coordinated to the copper surface with the imidazole functional group nearly parallel to, and strongly interacting with, the surface. The pi*/sigma* intensity ratio in NEXAFS spectra at the nitrogen edge varies strongly with angle, showing the imidazole ring is oriented. Adsorption models are proposed.  相似文献   

5.
The adsorption and thermal stability of 2-octylthieno[3,4-b]thiophene (OTTP) on the Au(111) surfaces have been studied using scanning tunneling microscopy (STM), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). UHV-STM studies revealed that the vapor-deposited OTTP on Au(111) generated disordered adlayers with monolayer thickness even at saturation coverage. XPS and TPD studies indicated that OTTP molecules on Au(111) are stable up to 450K and further heating of the sample resulted in thermal decomposition to produce H(2) and H(2)S via C-S bond scission in the thieno-thiophene rings. Dehydrogenation continues to occur above 600K and the molecules were ultimately transformed to carbon clusters at 900K. Highly resolved air-STM images showed that OTTP adlayers on Au(111) prepared from solution are composed of a well-ordered and low-coverage phase where the molecules lie flat on the surface, which can be assigned as a (9×2√33)R5° structure. Finally, based on analysis of STM, TPD, and XPS results, we propose a thermal decomposition mechanism of OTTP on Au(111) as a function of annealing temperature.  相似文献   

6.
The adsorption, desorption, and growth kinetics as well as the thin film morphology and crystal structure of p-quaterphenyl (4P) grown under ultrahigh vacuum conditions on single crystalline Au(111) have been investigated. Thermal desorption spectroscopy (TDS) reveals two distinct first-order peaks attributed to monolayer desorption followed by a zero-order multilayer desorption. The saturation coverage of the full 4P monolayer has been quantitatively measured with a quartz microbalance to be 8 x 10(13) molecules/cm2. Using low energy electron diffraction the structures of the 0.5 and 1 ML (monolayer) adsorbates have been studied, showing highly regular arrangements of the 4P molecules, which are affected by the (111) surface structure. At the transition from 0.5 to 1 ML a structural compression of the overlayer has been observed. The behavior of thicker 4P films has been investigated by combined TDS-XPS (XPS-x-ray photoelectron spectroscopy). A temperature-induced recrystallization process at about 270 K has been observed for a 7 nm thick 4P film grown at 93 K, corresponding to a transition from a disordered layerlike growth to a crystalline island growth. Ex situ optical microscopy and atomic-force microscopy investigations have revealed needle-shaped 4P islands. Applying x-ray diffraction the crystalline order and epitaxial relationship of the 4P films with 30 nm and 200 nm mean thicknesses have been determined.  相似文献   

7.
The authors have studied adsorption of acetylene on Cu(110) by means of low-temperature scanning tunneling microscopy. Adsorbed molecules preferentially aggregate at 40 K to yield dimer, trimer, and larger islands on the surface. Isolated species (monomer) adsorbs on the fourfold hollow site with approximately sp3 rehybridization as characterized by inelastic electron tunneling spectroscopy. Tunneling electron induces an acetylene molecule to migrate along the trough of Cu(110). The migration proceeds in two steps: the molecule first hops to the adjacent long-bridge site and then to the next fourfold site. The voltage and current dependencies of the hopping probability show that the migration is induced by inelastic electron tunneling that causes vibrational excitation of mainly C-H stretch mode.  相似文献   

8.
Chemical properties of epitaxially grown bimetallic layers may deviate substantially from the behavior of their constituents. Strain in conjunction with electronic effects due to the nearby interface represent the dominant contribution to this modification. One of the simplest surface processes to characterize reactivity of these substrates is the dissociative adsorption of an incoming homo-nuclear diatomic molecule. In this study, the adsorption of O(2) on various epitaxially grown Pt films on Ru(0001) has been investigated using infrared absorption spectroscopy and thermal desorption spectroscopy. Pt/Ru(0001) has been chosen as a model system to analyze the individual influences of lateral strain and of the residual substrate interaction on the energetics of a dissociative adsorption system. It is found that adsorption and dissociative sticking depends dramatically on Pt film thickness. Even though oxygen adsorption proceeds in a straightforward manner on Pt(111) and Ru(0001), molecular chemisorption of oxygen on Pt/Ru(0001) is entirely suppressed for the Pt/Ru(0001) monolayer. For two Pt layers chemisorbed molecular oxygen on Pt terraces is produced, albeit at a very slow rate; however, no (thermally induced) dissociation occurs. Only for Pt layer thicknesses N(Pt) ≥ 3 sticking gradually speeds up and annealing leads to dissociation of O(2), thereby approaching the behavior for oxygen adsorption on genuine Pt(111). For Pt monolayer films a novel state of chemisorbed O(2), most likely located at step edges of Pt monolayer islands is identified. This state is readily populated which precludes an activation barrier towards adsorption, in contrast to adsorption on terrace sites of the Pt/Ru(0001) monolayer.  相似文献   

9.
The adsorption of trimesic acid (TMA) on Cu(110) has been studied in the temperature range between 130 and 550 K and for coverages up to one monolayer. We combine scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), reflection absorption infrared spectroscopy (RAIRS), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations to produce a detailed adsorption phase diagram for the TMA/Cu(110) system as a function of the molecular coverage and the substrate temperature. We identify a quite complex set of adsorption phases, which are determined by the interplay between the extent of deprotonation, the intermolecular bonding, and the overall energy minimization. For temperatures up to 280 K, TMA molecules are only partly deprotonated and form hydrogen-bonded structures, which locally exhibit organizational chirality. Above this threshold, the molecules deprotonate completely and form supramolecular metal-organic structures with Cu substrate adatoms. These structures exist in the form of single and double coordination chains, with the molecular coverage driving distinct phase transitions.  相似文献   

10.
Magnetic Langmuir-Blodgett films of four ferritin derivatives with different iron contents containing 4220, 3062, 2200, and 1200 iron atoms, respectively, have been prepared by using the adsorption properties of a 6/1 mixed monolayer of methyl stearate (SME) and dioctadecyldimethylammonium bromide (DODA). The molecular organization of the mixed SME/DODA monolayer is strongly affected by the presence of the water-soluble protein in the subphase as shown by pi-A isotherms, BAM images, and imaging ellipsometry at the water-air interface. BAM images reveal the heterogeneity of this mixed monolayer at the air-water interface. We propose that the ferritin is located under the mixed matrix in those regions where the reflectivity is higher whereas the dark regions correspond to the matrix. Ellipsometric angle measurements performed in zones of different brightness of the mixed monolayer confirm such a heterogeneous distribution of the protein under the lipid matrix. Transfer of the monolayer onto different substrates allowed the preparation of multilayer LB films of ferritin. Both infrared and UV-vis spectroscopy indicate that ferritin molecules are incorporated within the LB films. AFM measurements show that the heterogeneous distribution of the ferritin at the water-air interface is maintained when it is transferred onto solid substrates. Magnetic measurements show that the superparamagnetic properties of these molecules are preserved. Thus, marked hysteresis loops of magnetization are obtained below 20 K with coercive fields that depend on the number of iron atoms of the ferritin derivative.  相似文献   

11.
We present a low-temperature scanning tunneling microscopy study of increasing coverages of 2,5-dichlorothiophenol, an asymmetrically halo-substituted aromatic thiol, on Cu(111). At low coverage, deprotonation of the thiol occurs spontaneously upon adsorption at 80 K. Albeit the low deposition temperature, we find the formation of adsorbate islands at low coverage, which coalesce into a well-ordered film of horizontally adsorbed molecules at increasing coverage. This behavior indicates (i) significant mobility of the thiols on Cu(111) even at low temperatures and (ii) attractive adsorbate-adsorbate interactions. At higher coverages intermolecular interactions prevent long-range diffusion of adsorbates and thermal activation of the S-H bond becomes necessary. A close analysis of the molecular films reveals chiral recognition between neighboring molecules, which leads to the formation of enantiopure areas on the surface. Upright orientation of individual molecules starts at the boundaries between such phases and can be induced by scanning tunneling microscopy.  相似文献   

12.
The structure and thermal stability of self-assembled monolayers (SAMs) of benzenethiolate (BT) on Cu(100) have been studied by means of thermal desorption spectroscopy (TDS), scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), UV photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray adsorption fine structure spectroscopy (NEXAFS). Vapor deposition at room temperature yields a well-ordered, densely packed c(6 × 2) saturation structure. At room temperature, this film is, however, metastable and transforms via partial decomposition by cleavage of the S-C bond into a less densely packed layer that reveals a coexisting p(2 × 2) phase. Such a transition occurs on a time scale of several days and is accompanied by a reduction of the work function change with respect to the bare Cu(100) surface from Δ? = -0.9 eV for a freshly prepared saturated layer to -0.5 eV for an aged film. TDS experiments exhibit the presence of two distinct desorption channels (dissociative and intact desorption) occurring at different temperatures that reflects a variation of the local Cu-S interaction strength of BT at differently coordinated adsorption sites. Heating to above room temperature causes a rapid degradation and continuous thinning of BT films whereas above 500 K all thiolate species have desorbed or dissociated, leaving a sulfide overlayer behind that is accompanied by a substrate reconstruction. Interestingly, the upright orientation of BT adopted in the saturated monolayer remains almost identical upon heating and demonstrates the absence of downward tilting upon thermally induced thinning of the film.  相似文献   

13.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

14.
Atomic force microscopy operating in noncontact electrostatic force mode was used to study the interaction of water with films of alkylamines and alkylsilanes on mica. The films efficiently block water adsorption except in exposed mica areas, where it strongly modifies the mobility of surface ions. We also studied the molecular orientation of octadecylamine molecules forming monolayers and multilayer islands. In monolayer films the molecules bind to mica through the amino group, producing a positive contact potential relative to mica (dipole pointing up). In multilayer films the methyl and amino group terminations are exposed in alternating layers that give rise to alternating values of the contact potential. These findings correlate with low and high friction forces measured in the methyl termination and amino terminations.  相似文献   

15.
单层 FeO 薄膜表面周期性氧缺陷结构的形成   总被引:1,自引:0,他引:1  
 采用扫描隧道显微镜和 X 射线光电子能谱对含有次表层 Fe 的 Pt 表皮结构 (Pt skin), 即 0.4 ML Fe 的 Pt/Fe/Pt(111) 表面, 在 1.1 × 10?7 kPa 氧气气氛退火过程中的变化进行了研究. 结果表明, 当退火温度为 600 K 时, 氧气在 Pt/Fe/Pt(111) 表面上解离吸附并诱导表面局域结构的重构; 750 K 时次表层 Fe 可以扩散到表面并被氧化; 当升至 850 K 时, 在样品表面形成单层 FeO 结构, 并且 FeO 表面具有周期性的缺陷. 这种缺陷是由于单层 FeO 薄膜的摩尔条纹单胞中 fcc 位上一个或多个氧原子缺失形成的, 其中多原子空位被确定为缺失 6 个氧原子所致. FeO 表面缺陷结构的研究为理解 Fe-Pt 催化剂在氧化气氛中的结构稳定性以及构造表面活性位提供一定的基础.  相似文献   

16.
The interaction between glycine (NH2CH2COOH) layers and an ultrathin Al2O3 film grown epitaxially onto NiAl(110) was studied by temperature-programmed desorption, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, work function measurements, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. At monolayer coverages at 110 K, there are two coexisting molecular forms: the anionic (NH2CH2COO-) and the zwitterionic form (NH3+CH2COO-) of glycine. As deduced from the photoemission data, the buildup of multilayers at 110 K leads to a condensed phase predominantly in the zwitterionic state. In contrast to the monolayer at 110 K, the monolayer formed at 300 K consists primarily of glycine molecules in the anionic state. The latter species is adsorbed with the oxygen atoms of the carboxylic group pointing toward the substrate. The polarization-dependent C K- and O K-edge NEXAFS spectra indicate that the glycinate species in the monolayer at 300 K is oriented nearly perpendicular to the surface, with the amino group pointing away from the surface.  相似文献   

17.
The adsorption, thermal evolution, and electron irradiation of 2-butanol on Pt(111) were investigated with reflection absorption infrared spectroscopy (RAIRS). A simulated vibrational spectrum of a single 2-butanol molecule was calculated using density functional theory to facilitate vibrational assignments. Exposures of 0.2 Langmuir (L) and lower result in both isolated 2-butanol molecules with minimal lateral interactions and hydrogen-bonded clusters. The thermal evolution following a 4.0 L exposure shows that the hydrogen-bonded multilayer desorbs around 170 K, leaving a 2-butanol monolayer where hydrogen bonding still exists. At 190 K, a new feature at 1699 cm(-1) is attributed to the formation of butanone. Irradiation with 750 or 100 eV electrons leads to 2-butanol desorption and partial conversion to butanone, as indicated by the appearance of a peak at 1709 cm(-1).  相似文献   

18.
The molecular structure of thin pentacene (C(22)H(14)) films grown on a Cu(110) surface has been studied by means of He atom scattering, low energy electron diffraction, thermal desorption spectroscopy, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. Depending on the actual film thickness three different crystalline phases have been identified which reveal a characteristic reorientation of the molecular plane relative to the substrate surface. In the monolayer regime the molecules form a highly ordered commensurate (6.5x2) structure with a planar adsorption geometry. For thin multilayers (thickness <2 nm) a second phase is observed which is characterized by a lateral ((-0.65 5.69) ( 1.90 1.37)) structure and a tilting of the molecular plane of about 28 degrees around their long axis which remains parallel to the surface. Finally, when exceeding a thickness of about 2 nm subsequent growth proceeds with an upright molecular orientation and leads to the formation of crystalline films which are epitaxially oriented with respect to the substrate. The present study thus demonstrates that also on metal substrates highly ordered pentacene films with an upright orientation of the molecular planes can be grown. Photoelectron spectroscopy data indicate further that thick films do not grow in a layer-by-layer mode but reveal a significant degree of roughness.  相似文献   

19.
The growth of epitaxial ultrathin BaTiO(3) films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O(2). By adjusting the Ar and O(2) partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO(3)(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO(3) films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO(3)(100)-(1 × 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 × 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO(3) thin film starts to decay by formation of vacancy islands. In addition (4 × 4) and (3 × 3) surface reconstructions develop upon prolonged heating.  相似文献   

20.
The adsorption and segregation of carbon or sulfur on Ni single crystal surfaces have been investigated by scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). Different adsorbate(segregate)-induced surface modifications have been detected in dependence on the original Ni surface orientation and the kind of nonmetal atoms: i) Adsorption of carbon from ethylene on Ni(111) at 6.7×10–4 Pa and 1000K leads to the epitaxial growth of a graphitic carbon monolayer which exhibits the structure of the hexagonal basal plane of graphite. However, as is found for highly oriented pyrolytic graphite (HOPG), only three of six carbon atoms of the (0001) graphite plane are imaged by STM. In contrast, on Ni(771) at 663 to 1000 K carbon islands have been formed but no graphite monolayer formation is detected. This behavior can be understood by considering the aspects that no large-area epitaxy between the graphite basal plane and the Ni(110) terraces exists and that the surface carbon activity was too low to initiate substrate restructuring. ii) Segregation of sulfur (from the Ni bulk containing 5 to 7 ppm S) on Ni(110) at 1043K and s0.4 ML initiates the growth of sulfur islands which show a c(2×2)-S overlayer structure, whereas on Ni(111) at 823K and s0.2 ML (average value) a reconstructed surface phase is forming which can be described as an adsorbed two-dimensional sulfide Ni2S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号