首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of NpO(2) with SeO(2) in the presence of CsCl at 180 degrees C results in the formation of Np(NpO(2))(2)(SeO(3))(3) (1). The structure of 1 consists of three crystallographically unique Np centers with three different coordination environments in two different oxidation states. Np(1) is found in a neptunyl(V), O[double bond]Np[double bond]O(+), unit that is further ligated in the equatorial plane by three chelating SeO(3)(2-) anions to create a hexagonal bipyramidal NpO(8) unit. A second neptunyl(V) cation also occurs for Np(2); it is bound by four bridging selenite anions and by the oxo atom from the Np(1) neptunyl cation to form a pentagonal bipyramidal, NpO(7), unit. The third neptunium center, Np(3), which contains Np(IV), is found in a distorted NpO(8) dodecahedron. Np(3) is bound by five bridging selenite anions and by three neptunyl units via cation-cation interactions. The NpO(7) pentagonal bipyramids and NpO(8) hexagonal bipyramids share both corners and edges. Both of these polyhedra share corners via cation-cation interactions with the NpO(8) dodecahedra creating a three-dimensional structure with small channels that house the stereochemically active lone pair of electrons on the selenite anions. Magnetic susceptibility data follow Curie-Weiss behavior over the entire temperature range measured (5 < or = T < or = 320 K). The effective moment, mu(eff) = 2.28 mu(B), which represents an average over the three crystallographically inequivalent Np atoms, is within the expected range of values. There is no evidence of long-range ordering of the Np moments at temperatures down to 5 K, consistent with the negligible Weiss constant determined from fitting the susceptibility data. Crystallographic data: 1, orthorhombic, space group Pbca, a = 10.6216(5), b = 11.9695(6), and c = 17.8084(8) A and Z = 8 (T = 193 K).  相似文献   

2.
The compounds K0.91U1.79S6 and KU2Se6, members of the AAn2Q6 actinide family (A = alkali metal or Tl; An = Th or U; Q = S, Se, or Te), have been synthesized from US2, K2S, and S at 1273 K and U, K2Se, and Se at 1173 K, respectively. KU2Se6 shows Curie-Weiss behavior above 30 K and no magnetic ordering down to 5 K. The value of mu(eff) is 2.95(1) mu(B)/U. Its electronic spectrum shows the peaks characteristic of 5f-5f transitions. It is a semiconductor with an activation energy of 0.27 eV for electrical conduction. Both K0.91U1.79S6 and KU2Se6 crystallize in space group Immm of the orthorhombic system and are of the KTh2Se6 structure type. Both contain infinite one-dimensional linear Q-Q chains characteristic of the AAn2Q6 family. Typical of the known AAn2Q6 compounds, in KU2Se6, there are two alternating Se-Se distances of 2.703(2) and 2.855(2) A, both much longer than an Se-Se single bond. In contrast, in K0.91U1.79S6, the first sulfide of this family to be characterized structurally, there are alternating normal S2(2-) pairs 2.097(5) A in length. In K0.91U1.79S6, the formal oxidation state of U is 4+.  相似文献   

3.
The compounds Tl(3)Cu(4)USe(6) and Tl(2)Ag(2)USe(4) were synthesized by the reaction of the elements in excess TlCl at 1123 K. Both compounds crystallize in new structure types, in space groups P2(1)/c and C2/m, respectively, of the monoclinic system. Each compound contains layers of USe(6) octahedra and MSe(4) (M = Cu, Ag) tetrahedra, separated by Tl(+) cations. The packing of the octahedra and the tetrahedra within the layers is compared to the packing arrangements found in other layered actinide chalcogenides. Tl(3)Cu(4)USe(6) displays peaks in its magnetic susceptibility at 5 and 70 K. It exhibits modified Curie-Weiss paramagnetic behavior with an effective magnetic moment of 1.58(1) μ(B) in the temperature range 72-300 K, whereas Tl(2)Ag(2)USe(4) exhibits modified Curie-Weiss paramagnetic behavior with μ(eff) = 3.4(1) μ(B) in the temperature range 100-300 K. X-ray absorption near-edge structure (XANES) results from scanning transmission X-ray spectromicroscopy confirm that Tl(3)Cu(4)USe(6) has Se bonding characteristic of discrete Se(2-) units, Cu bonding generally representative of Cu(+), and U bonding consistent with a U(4+) or U(5+) species. On the basis of these measurements, as well as bonding arguments, the formal oxidation states for U may be assigned as +5 in Tl(3)Cu(4)USe(6) and +4 in Tl(2)Ag(2)USe(4).  相似文献   

4.
CsLnMnSe(3) (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ(3) (A = Rb, Cs; Q = S, Se, Te) have been synthesized from solid-state reactions at temperatures in excess 1173 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm. The structure is composed of LnQ(6) octahedra and MQ(4) tetrahedra that share edges to form [LnMQ(3)] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing AQ(8) bicapped trigonal prisms. There are no Q-Q bonds in the structure of the ALnMQ(3) compounds so the formal oxidation states of A/Ln/M/Q are 1+/3+/2+/2-. The CsLnMnSe(3) materials, with the exception of CsYbMnSe(3), are Curie-Weiss paramagnets between 5 and 300 K. The magnetic susceptibility data for CsYbZnS(3), RbYbZnSe(3), and CsYbMSe(3) (M = Mn, Zn) show a weak cusp at approximately 10 K and pronounced differences between field-cooled and zero-field-cooled data. However, CsYbZnSe(3) is not an antiferromagnet because a neutron diffraction study indicates that CsYbZnSe(3) shows neither long-range magnetic ordering nor a phase change between 4 and 295 K. Nor is the compound a spin glass because the transition at 10 K does not depend on ac frequency. The optical band gaps of the (010) and (001) crystal faces for CsYbMnSe(3) are 1.60 and 1.59 eV, respectively; the optical band of the (010) crystal faces for CsYbZnS(3) and RbYbZnSe(3) are 2.61 and 2.07 eV, respectively.  相似文献   

5.
Black crystals of Np(PS(4)), Np(P(2)S(6))(2), K(11)Np(7)(PS(4))(13), and Rb(11)Np(7)(PS(4))(13) have been synthesized by the reactions of Np, P(2)S(5), and S at 1173 and 973 K; Np, K(2)S, P, and S at 773 K; and Np, Rb(2)S(3), P, and S at 823 K, respectively. The structures of these compounds have been characterized by single-crystal X-ray diffraction methods. Np(PS(4)) adopts a three-dimensional structure with Np atoms coordinated to eight S atoms from four bidentate PS(4)(3-) ligands in a distorted square antiprismatic arrangement. Np(PS(4)) is isostructural to Ln(PS(4)) (Ln = La-Nd, Sm, Gd-Er). The structure of Np(P(2)S(6))(2) is constructed from three interpenetrating diamond-type frameworks with Np atoms coordinated to eight S atoms from four bidentate P(2)S(6)(2-) ligands in a distorted square antiprismatic geometry. The centrosymmetric P(2)S(6)(2-) anion comprises two PS(2) groups connected by two bridging S centers. Np(P(2)S(6))(2) is isostructural to U(P(2)S(6))(2). A(11)Np(7)(PS(4))(13) (A = K, Rb) adopts a three-dimensional channel structure built from interlocking [Np(7)(PS(4))(13)](11-)-screw helices with A cations residing in the channels. The structure of A(11)Np(7)(PS(4))(13) includes four crystallographically independent Np atoms. Three are connected to eight S atoms in bicapped trigonal prisms. The other Np atom is connected to nine S atoms in a tricapped trigonal prism. A(11)Np(7)(PS(4))(13) is isostructural to A(11)U(7)(PS(4))(13). From Np-S bond distances and charge-balance, we infer that Np is trivalent in Np(PS(4)) and tetravalent in Np(P(2)S(6))(2) and A(11)Np(7)(PS(4))(13). Np exhibits a behavior intermediate between U and Pu in its thiophosphate chemistry.  相似文献   

6.
Mechanochemical reaction of cluster coordination polymers 1infinity[M3Q7Br4] (M = Mo, W; Q = S, Se) with solid K2C2O4 leads to cluster core excision with the formation of anionic complexes [M3Q7(C2O4)3]2-. Extraction of the reaction mixture with water followed by crystallization gives crystalline K2[M3Q7(C2O4)3].0.5KBr.nH2O (M = Mo, Q = S, n = 3 (1); M = Mo, Q = Se, n = 4 (2); M = W, Q = S, n = 5 (3)). Cs2[Mo3S7(C2O4)3].0.5CsCl.3.5H2O (4) and (Et4N)1.5H0.5K{[Mo3S7(C2O4)3]Br}.2H2O (5) were also prepared. Close Q...Br contacts result in the formation of ionic triples {[M3Q7(C2O4)3](2)Br}5- in 1-4 and the 1:1 adduct {[Mo3S7(C2O4)3]Br}3- in 5. Treatment of 1 or 2 with PPh(3) leads to chalcogen abstraction with the formation of [Mo3(mu3-Q)(mu2-Q)3(C2O4)3(H2O)3]2-, isolated as (Ph4P)2[Mo3(mu3-S)(mu2-S)3(C2O4)3(H2O)3].11H2O (6) and (Ph4P2[Mo3(mu3-Se)(mu2-Se)3(C2O4)3(H2O)3].8.5H2O.0.5C2H5OH (7). All compounds were characterized by X-ray structure analysis. IR, Raman, electronic, and 77Se NMR spectra are also reported. Thermal decomposition of 1-3 was studied by thermogravimetry.  相似文献   

7.
The rare-earth metal(III) oxide selenides of the formula La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were synthesized from a mixture of the elements with selenium dioxide as the oxygen source at 750 degrees C. Single crystal X-ray diffraction was used to determine their crystal structures. The isostructural compounds M4O4Se[Se2] (M=La, Ce, Pr, Nd, Sm) crystallize in the orthorhombic space group Amm2 with cell dimensions a=857.94(7), b=409.44(4), c=1316.49(8) pm for M=La; a=851.37(6), b=404.82(3), c=1296.83(9) pm for M=Ce; a=849.92(6), b=402.78(3), c=1292.57(9) pm for M=Pr; a=845.68(4), b=398.83(2), c=1282.45(7) pm for M=Nd; and a=840.08(5), b=394.04(3), c=1263.83(6) pm for M=Sm (Z=2). In their crystal structures, Se2- anions as well as [Se-Se]2- dumbbells interconnect {[M4O4]4+} infinity 2 layers. These layers are composed of three crystallographically different, distorted [OM4]10+ tetrahedra, which are linked via four common edges. The compounds exhibit strong Raman active modes at around 215 cm(-1), which can be assigned to the Se-Se stretching vibration. Optical band gaps for La4O4Se[Se2], Ce4O4Se[Se2], Pr4O4Se[Se2], Nd4O4Se[Se2], and Sm4O4Se[Se2] were derived from diffuse reflectance spectra. The energy values at which absorption takes place are typical for semiconducting materials. For the compounds M4O4Se[Se2] (M=La, Pr, Nd, Sm) the fundamental band gaps, caused by transitions from the valence band to the conduction band (VB-CB), lie around 1.9 eV, while for M=Ce an absorption edge occurs at around 1.7 eV, which can be assigned to f-d transitions of Ce3+. Magnetic susceptibility measurements of Ce4O4Se[Se2] and Nd4O4Se[Se2] show Curie-Weiss behavior above 150 K with derived experimental magnetic moments of 2.5 micro B/Ce and 3.7 micro B/Nd and Weiss constants of theta p=-64.9 K and theta p=-27.8 K for the cerium and neodymium compounds, respectively. Down to 1.8 K no long-range magnetic ordering could be detected. Thus, the large negative values for theta p indicate the presence of strong magnetic frustration within the compounds, which is due to the geometric arrangement of the magnetic sublattice in form of [OM4]10+ tetrahedra.  相似文献   

8.
Green crystals of Na(NpO(2))(SeO(4))(H(2)O) (1), Na(3)(NpO(2))(SeO(4))(2)(H(2)O) (2), and Na(3)(NpO(2))(SeO(4))(2)(H(2)O)(2) (3) have been prepared by a hydrothermal method for 1 or evaporation from aqueous solutions for 2 and 3. The structures of these compounds have been characterized by single-crystal X-ray diffraction. Compound 1 is isostructural with Na(NpO(2))(SO(4))(H(2)O) (4). The structure of 1 consists of ribbons of neptunyl(V) pentagonal bipyramids, which are decorated and further connected by selenate tetrahedra to form a three-dimensional framework. The resulting open channels are filled by Na(+) cations and H(2)O molecules. Within the ribbon, each neptunyl polyhedron shares corners with each other solely through cation-cation interactions (CCIs). The structure of 2 adopts one-dimensional [(NpO(2))(SeO(4))(2)(H(2)O)](3-) chains connected by Na(+) cations. Each NpO(2)(+) cation is coordinated by four monodentate SeO(4)(2-) anions and one H(2)O molecule to form a pentagonal bipyramid. The structure of 3 is constructed by one-dimensional [(NpO(2))(SeO(4))(2)](3-) chains separated by Na(+) cations and H(2)O molecules. These chains have two configurations resulting in two disordered orientations of the Se(2)O(4)(2-) tetrahedra. Each NpO(2)(+) cation is coordinated by one bidentate Se(1)O(4)(2-) and three monodentate Se(2)O(4)(2-) anions to form a pentagonal bipyramid. Raman spectra of 1, 2, and 4 were collected on powder samples. For 1 and 4, the neptunyl symmetric stretch modes (670, 676, 730, and 739 cm(-1)) shift significantly toward lower frequencies compared to that in 2 (773 cm(-1)), and there are several asymmetric neptunyl stretch bands in the region of 760-820 cm(-1). Magnetic measurements obtained from crushed crystals of 1 are consistent with a ferromagnetic ordering of the neptunyl(V) spins at 6.5(2) K, with an average low temperature saturation moment of 2.2(1) μ(B) per Np. Well above the ordering temperature, the susceptibility follows Curie-Weiss behavior, with an average effective moment of 3.65(10) μ(B) per Np and a Weiss constant of 14(1) K. Correlations between lattice dimensionality and magnetic behavior are discussed.  相似文献   

9.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

10.
Two Np(5+) silicates, Li(6)(NpO(2))(4)(H(2)Si(2)O(7))(HSiO(4))(2)(H(2)O)(4) (LiNpSi1) and K(3)(NpO(2))(3)(SiO(3)OH)(2) (KNpSi1), were synthesized by hydrothermal methods. The crystal structures were determined using direct methods and refined on the basis of F(2) for all unique data collected with Mo Kalpha radation and an APEX II CCD detector. LiNpSi1 crystallizes in orthorhombic space group Pnma with a =13.189(6) A, b = 7.917(3) A, c = 10.708(5) A, V = 1118.1(8) A3, and Z = 2. KNpSi1 is hexagonal, P62m, a = 9.734(1) A, c = 3.8817(7) A, V = 318.50(8) A3, and Z = 1. LiNpSi1 contains chains of edge-sharing neptunyl pentagonal bipyramids linked into two-dimensional sheets through direct linkages between the neptunyl polyhedra and the vertex sharing of the silicate tetrahedra. The structure contains both sorosilicate and nesosilicate units, resulting in a new complex neptunyl silicate sheet. KNpSi1 contains edge-sharing neptunyl square bipyramids linked into a framework structure through the sharing of vertices with the silicate tetrahedra. The neptunyl silicate framework contains channels approximately 6.0 A in diameter. These structures exhibit significant departures from other reported Np(5+) and U(6+) compounds and represent the first reported Np(5+) silicate structures.  相似文献   

11.
The compound Ba(8)Hg(3)U(3)S(18) was obtained from the solid-state reaction at 1123 K of U, HgS, BaS, and S, with BaBr(2)/KBr or BaCl(2) as a flux. This material crystallizes in a new structure type in space group P6 of the hexagonal system with three formula units in a cell of dimensions a = 27.08(1) ?, c = 4.208(2) ?, and V = 2673(2) ?(3). The structure contains infinite chains of US(6) octahedra and nearly linear [S-Hg-S](2-) dithiomercurate anions, separated by Ba(2+) cations. In the temperature range 100-300 K, the paramagnetic behavior of Ba(8)Hg(3)U(3)S(18) can be fit to the Curie-Weiss law, resulting in μ(eff) = 5.40(4) μ(B), or 3.12(2) μ(B)/U. The compound displays an antiferromagnetic transition at T(N) = 59 K. Although the formal oxidation states of Ba, Hg, and S can be assigned as +2, +2, and -2, the oxidation state of U is less certain. On the basis of interatomic distance arguments and the magnetic susceptibility data, the compound is proposed to contain U in both +4 and +5 formal oxidation states.  相似文献   

12.
Novel SHG effective inorganic open-framework chalcohalides, Ba(3)AGa(5)Se(10)Cl(2) (A = Cs, Rb and K), have been synthesized by high temperature solid state reactions. These compounds crystallize in the tetragonal space group I ?4 (No.82) with a = b = 8.7348(6) - 8.6341(7) ?, c = 15.697(3) - 15.644(2) ?, V = 1197.6(3) - 1166.2(2) ?(3) on going from Cs to K. The polar framework of (3)(∞)[Ga(5)Se(10)](5-) is constructed by nonpolar GaSe(4)(5- )tetrahedron (T1) and polar supertetrahedral cluster Ga(4)Se(10)(8-) (T2) in a zinc-blende topological structure with Ba/A cations and Cl anions residing in the tunnels. Remarkably, Ba(3)CsGa(5)Se(10)Cl(2) exhibits the strongest intensity at 2.05 μm (about 100 times that of the benchmark AgGaS(2) in the particle size of 30-46 μm) among chalcogenides, halides, and chalcohalides. Furthermore, these compounds are also the first open-framework compounds with red photoluminescent emissions. The Vienna ab initio theoretical studies analyze electronic structures and linear and nonlinear optical properties.  相似文献   

13.
An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures. gamma-RbBi(3)S(5), gamma-RbBi(3)Se(5), and its isostructural analogues RbBi(3)Se(4)Te and RbBi(3)Se(3)Te(2) crystallize in the orthorhombic space group Pnma with a = 11.744(2) A, b = 4.0519(5) A, c = 21.081(3) A, R1 = 2.9%, wR2 = 6.3% for (I), a = 21.956(7) A, b = 4.136(2) A, c = 12.357(4) A, R1 = 6.2%, wR2 = 13.5% for (IV), and a = 22.018(3) A, b = 4.2217(6) A, c = 12.614(2) A, R1 = 6.2%, wR2 = 10.3% for (VI). gamma-RbBi(3)S(5) has a three-dimensional tunnel structure that differs from the Se analogues. alpha-RbBi(3)Se(5) crystallizes in the monoclinic space group C2/m with a = 36.779(4) A, b = 4.1480(5) A, c = 25.363(3) A, beta = 120.403(2) degrees, R1 = 4.9%, wR2 = 9.9%. beta-RbBi(3)Se(5) and isostructural CsBi(3)Se(5) adopt the space group P2(1)/m with a = 13.537(2) A, b = 4.1431(6) A, c = 21.545(3) A, beta = 91.297(3) degrees, R1 = 4.9%, wR2 = 11.0% for (III) and a = 13.603(3) A, b = 4.1502(8) A, c = 21.639(4) A, beta = 91.435(3) degrees, R1 = 6.1%, wR2 = 13.4% for (V). alpha-RbBi(3)Se(5) is also three-dimensional, whereas beta-RbBi(3)Se(5) and CsBi(3)Se(5) have stepped layers with alkali metal ions found disordered in several trigonal prismatic sites between the layers. In gamma-RbBi(3)Se(5) and RbBi(3)Se(4)Te, the layers consist of Bi(2)Te(3)-type fragments, which are connected in a stepwise manner. In the mixed Se/Te analogue, the Te occupies the chalcogen sites that are on the "surface" of the layers. All compounds are narrow band-gap semiconductors with optical band gaps ranging 0.4-1.0 eV. The thermal stability of all phases was studied, and it was determined that gamma-RbBi(3)Se(5) is more stable than the and alpha- and beta-forms. Electronic band calculations at the density functional theory (DFT) level performed on alpha-, beta-, and gamma-RbBi(3)Se(5) support the presence of indirect band gaps and were used to assess their relative thermodynamic stability.  相似文献   

14.
Four new quaternary selenides CsGdZnSe3, CsZrCuSe3, CsUCuSe3, and BaGdCuSe3 have been synthesized with the use of traditional high-temperature solid-state experimental methods. These compounds are isostructural with KZrCuS3, crystallizing with four formula units in the orthorhombic space group Cmcm. Cell constants (A) at 153 K are CsGdZnSe3 4.1684(7), 15.765(3), 11.0089(18); CsZrCuSe3 3.903(2), 15.841(10), 10.215(6); CsUCuSe3 4.1443(7), 15.786(3), 10.7188(18); and BaGdCuSe3 4.1839(6), 13.8935(19), 10.6692(15). The structure of these ALnMSe3 compounds (A = Cs, Ba; Ln = Zr, Gd, U; M = Cu, Zn) is composed of 2 to infinity [LnMSe3(n-)] (n = 1, 2) layers separated by A atoms. The Ln atom is octahedrally coordinated to six Se atoms, the M atom is tetrahedrally coordinated to four Se atoms, and the A atom is coordinated to a bicapped trigonal prism of eight Se atoms. Because there are no Se-Se bonds in the structure, the oxidation state of A is 1+ (Cs) or 2+ (Ba), that of Ln is 3+ (Gd) or 4+ (Zr, U), and that of M is 1+ (Cu) or 2+ (Zn). CsGdZnSe3 and BaGdCuSe3, which are paramagnetic, obey the Curie-Weiss law and have effective magnetic moments of 7.87(6) and 7.85(5) muB for Gd(3+), in good agreement with the theoretical value of 7.94 muB. Optical transitions at 1.88 and 2.92 eV for CsGdZnSe3 and 1.96 eV for BaGdCuSe3 were deduced from diffuse reflectance spectra.  相似文献   

15.
Deng B  Ellis DE  Ibers JA 《Inorganic chemistry》2002,41(22):5716-5720
The compounds RbLnSe(2) (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Ho, Er, Lu) have been synthesized by means of the reactive flux method at 1173 K. These isostructural compounds, which have the alpha-NaFeO(2) structure type, crystallize with three formula units in space group D(3d)(5)-R(-)3m of the trigonal system in cells at T = 153 K of dimensions (a, c in A) La, 4.4313(4), 23.710(3); Ce, 4.3873(3), 23.656(3); Pr, 4.3524(11), 23.655(7); Nd, 4.3231(5), 23.670(4); Sm, 4.2799(4), 23.647(3); Gd, 4.2473(7), 23.689(5); Tb, 4.2197(4), 23.631(3); Ho, 4.1869(6), 23.652(5); Er, 4.1541(8), 23.576(7); Lu, 4.1294(6), 23.614(5). The structure consists of close-packed Se layers in a pseudocubic structure distorted along [111]. The Rb and Ln atoms occupy distorted octahedral sites in alternating layers. The Rb-centered octahedra share edges with the Ln-centered octahedra between layers. Within a given layer, both the Rb-centered and Ln-centered octahedra share edges with themselves. RbTbSe(2) and RbErSe(2) exhibit Curie-Weiss paramagnetism between 5 and 300 K, and RbCeSe(2) exhibits Curie-Weiss paramagnetism between 100 and 300 K. The optical transitions for RbCeSe(2), RbTbSe(2), and RbErSe(2) are in the 2.0-2.2 eV region of the spectrum, both from diffuse reflectance spectra and from first-principles calculations. These calculations also provide insight into the electronic structures and chemical bonding in RbLnSe(2). A quadratic fit for the lanthanide contraction of the Ln-Se distance is superior to the linear one only if the closed-shell atoms La and Lu are included.  相似文献   

16.
LiEuPSe4, the first quaternary lithium-containing selenophosphate, was synthesized as red polyhedra by reacting Eu with a molten mixture of Li2Se/P2Se5/Se at 750 degrees C. Similarly, the reaction of Eu with a molten mixture of K2Se/P2Se5/Se at 495 degrees C produced red polyhedral crystals of KEuPSe4. Both compounds are unstable in moist air. In addition, both compounds were plagued with crystal twinning. Acceptable crystal structure refinements could only be obtained by identifying the type of twinning and taking it into account in the final refinement. LiEuPSe4 crystallizes in the noncentrosymmetric space group Ama2 (no. 40) with a = 10.5592 (9) A, b = 10.415 (1) A, c = 6.4924(7) A, and Z = 4. The structure is three-dimensional and composed of EuSe8 distorted square antiprisms and PSe4 tetrahedral building blocks that create tunnels, running down the a axis, in which the Li ions reside. The Li ions are in a highly distorted tetrahedral coordination. KEuPSe4 crystallizes in the space group P2(1)/m (no. 11) with a = 6.8469(6) A, b = 6.9521(6) A, c = 9.0436(8) A, beta = 107.677(2) degrees, and Z = 2. The structure has two-dimensional character with layers composed of EuSe6 trigonal prisms and PSe4 tetrahedral units. Between the [EuPSe4]nn- layers the K ions reside in a bicapped trigonal prism of Se atoms. The structure of the [EuPSe4]nn- framework is similar to that found in CsPbPSe4. Both compounds are semiconductors with band gaps of 2.00 and 1.88 eV, respectively. Differential thermal analysis and infrared spectroscopic characterization are also reported.  相似文献   

17.
Two noncentrosymmetric quaternary tin chalcoarsenates, Cs(2)SnAs(2)S(9) (1) and Cs(2)SnAs(2)Se(9) (2), were synthesized by the polychalcoarsenate flux method. Compound 1 crystallizes in the orthorhombic space group Pmc2(1) with a = 7.386(3) A, b = 14.614(5) A, c = 14.417(5) A, and Z = 4. Compound 2 crystallizes in the monoclinic space group P2(1) with a = 7.715(5) A, b = 17.56(1) A, c = 7.663(5) A, beta = 115.86(1) degrees, and Z = 2. Both structures contain the same tin-centered molecular cluster anions [Sn[AsQ(2)(Q(2))][AsQ(Q(2))(2)]](2)(-) (Q = S, Se) separated by Cs cations. The Sn(4+) ion is in a distorted octahedral environment coordinated by two different pyramidal-shaped tridentate ligands, [AsQ(2)(Q(2))](3)(-) and [AsQ(Q(2))(2)](3)(-). These compounds absorb visible light at energies above 1.98 and 1.45 eV for 1 and 2, respectively. Differential thermal analysis revealed that 1 melts at 350 degrees C and on cooling gives a glass. The glass recrystallizes at 268 degrees C upon subsequent heating. Compound 2 melts at 258 degrees C.  相似文献   

18.
The compound K2Cu3US5 was obtained by the reaction of K2S, UCl4, CuCl, and S at 973 K. K2Cu3US5 crystallizes in a new structure type in space group Cmcm of the orthorhombic system in a cell of dimensions a = 3.9374(6) A, b = 13.813(2) A, c = 17.500(3) A, and V = 951.8(2) A3 at 153 K. The structure comprises (2)(infinity)[UCu3S52-] slabs separated by K+ cations. The slabs are built from CuS4 tetrahedra and US6 octahedra. Their connectivity differs from other known octahedral/tetrahedral packing patterns. In the temperature range 130-300 K the compound exhibits Curie-Weiss magnetic behavior with mu(eff) = 2.45(8) mu(B). This result together with both the bond distances and bond valence calculations and the absence of a Cu2+ ESR signal support the formulation of the above compound as K+2Cu+3U5+S2-5.  相似文献   

19.
Black prisms of UFeS(3) and UFeSe(3) have been synthesized by solid-state reactions of U, Fe, and S or Se with CsCl as a flux at 1173 K. The structure of these isostructural compounds consists of layers of edge- and corner-sharing FeS(6) or FeSe(6) octahedra that are separated by layers of face- and edge-sharing US(8) or USe(8) bicapped trigonal prisms. The isomer shifts in the iron-57 M?ssbauer spectra of both UFeS(3) and UFeSe(3) are consistent with the presence of high-spin iron(II) ions octahedrally coordinated to S or Se. The XANES spectra of UFeS(3) and UFeSe(3) are consistent with uranium(IV). Single-crystal magnetic susceptibility measurements along the three crystallographic axes of UFeSe(3) reveal a substantial magnetic anisotropy with a change of easy axis from the a-axis above 40 K to the b-axis below 40 K, a change that results from competition between the iron(II) and uranium(IV) anisotropies. The temperature dependence of the magnetic susceptibility along the three axes is characteristic of two-dimensional magnetism. A small shoulder-like anomaly is observed in the magnetic susceptibilities along the a- and b-axes at 96 and 107 K, respectively. Below 107 K, the iron-57 M?ssbauer spectra of UFeS(3) and UFeSe(3) show that the iron nuclei experience a magnetic hyperfine field that results from long-range magnetic ordering of at least the iron(II) magnetic moments because the field exhibits Brillouin-like behavior. Below 40 K there is no significant change in the M?ssbauer spectra as a result of change in magnetic anisotropy. The complexity of the iron-57 M?ssbauer spectra and the temperature and field dependencies of the magnetic properties point toward a complex long-range magnetic structure of two independent iron(II) and uranium(IV) two-dimensional sublattices. The temperature dependence of the single-crystal resistivity of UFeSe(3) measured along the a-axis reveals semiconducting behavior between 30 and 300 K with an energy gap of about 0.03 eV below the 53 K maximum in susceptibility, of about 0.05 eV between 50 and 107 K, and of 0.03 eV above 107 K; a negative magnetoresistance was observed below 60 K.  相似文献   

20.
Brown needle-like crystals of CaEr2S4 were isolated as the major product from a reaction of elements and binary sulfides by a two-step flux technique. CaEr2S4 crystallizes in the orthorhombic space group Pnma with a = 12.845(4), b = 3.862(4), c = 13.001(2) , V = 645.0(7) 3, Z = 4, F(000) = 880, μ(MoKα) = 27.794 mm-1, the final R = 0.0528 and wR = 0.0562 for 1070 observed reflections with I > 3σ(I). The CaEr2S4 structure forms a three-dimensional framework that consists of interconnected tetra-octahedral Er4S18 fragments. Ca2+ cations, in a monocapped trigonal prism geometry, are stuffed in two parallel rows into the one-dimensional channels along the b direction. CaEr2S4 is an infrared-transparent semiconductor with a band gap of 1.81 eV. Magnetic susceptibility measurements over 6~300 K indicate a Curie-Weiss paramagnetic behavior for the phase, with an effective magnetic moment of 9.64(1) μB per Er3+ ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号