首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以氯化钡提纯k-卡拉胶, 经过氧化氢降解, 通过反相乳液聚合的方式制备了一系列卡拉胶包覆聚磷酸铵(APP)阻燃微球(k-CM/APP); 将其加入到水性环氧树脂(EP)中, 制备了3种钢结构防火涂层EP2, EP3和EP4. 利用红外光谱(IR)、 扫描电子显微镜(SEM)及元素分析(EDS)对k-CM/APP的结构及形貌进行了表征. 利用极限氧指数(LOI)、 垂直燃烧(UL-94)、 背温测试法、 热重分析(TG)、 锥形量热(CONE)、 附着力测试、 IR和SEM等方法分析了涂层的阻燃、 隔热及力学性能. 结果表明, k-CM/APP(3/1)球形结构完整, 800 ℃时的残炭量高达59.5%. 与其它阻燃涂层体系相比, 添加了k-CM/APP(3/1)的EP3防火涂层的极限氧指数达到28.5%, UL-94达到了V-0级, 60 min防火涂层耐火温度为253 ℃. 相比于纯EP涂层, EP3涂层的热释放速率峰值降低了58.26%, 总热释放量降低了20.84%, 附着力达到8.74 MPa.  相似文献   

2.
Extruded polystyrene (XPS) is often treated with hexabromocyclododecane (HBCD) as fire retardant (FR). Because of its aliphatic structure, HBCD is not suspected to cause formation of polybrominated dioxins upon combustion. Precursors of polybrominated dioxins, namely bromophenols, were detected during tubular furnace combustion experiments of FR-XPS in combination with sorptive enrichment on polydimethylsiloxane followed by on-line thermal desorption-capillary GC/MS. The highest concentration of mono- and tribromophenols detected were 85.9 and 3.7 mg kg(-1), respectively, at a temperature of 700 degrees C, while a temperature of 500 degrees C yielded the highest concentration of dibromophenols namely 10.4 mg kg(-1). At a combustion temperature of 900 degrees C no bromophenols were detected.  相似文献   

3.
The fundamental mechanisms by which fire retardant additives can interrupt the self-sustained combustion cycle of organic polymers are reviewed. Evaluation of fire retardant performance and methods used for mechanism assessment are discussed. Examples are given of recent mechanistic studies of halogen-based and intumescent systems indicating that some previous generalisations should be revised. It is shown that a deeper understanding of fire retardance mechanisms acquired through detailed thermal degradation studies is the only way to answer the ever increasing demand for polymeric materials characterised by minimised overall fire hazard.  相似文献   

4.
It has been a long-term challenge to synthesize intrinsically flame retardant polyamide 6 (FRPA6) with high-molecular weight. In this work, through the ring-opening polymerization of caprolactam initiated by 9,10-dihydro-10-[2,3-di(hydroxycarbonyl)propyl]-10 phosphaphenanthrene-10-oxide (DOPO-ITA), intrinsically flame retardant PA6 with high-molecular weight was successfully prepared. Its chemical structure, thermal stability, mechanical and combustion properties, as well as the retarding mechanism were thoroughly characterized in detail. The FRPA6 containing 3.0% retardant could achieve a V-0 rating with an LOI value of 31.2%. An interesting phenomenon was observed during V-0 tests. The melt drip slowly extended downward to form a long strip after moving fire, which was in favor of its heat release in a short time, thereby effectively prevented it from igniting the cotton. That is, a facile method to prepare intrinsically high-efficiency fire retardant polymer via ring opening and polycondensation was proposed.  相似文献   

5.
This study explores for the first time the synergistic fire retardant action of natural hydrated calcium borate, namely the mineral colemanite, which partially replaces antimony oxide in brominated flame retardant high-impact polystyrene compounds. Various antimony oxide to hydrated calcium borate ratios were employed keeping the brominated flame retardant additive at a constant loading level. With partial colemanite substitution for antimony oxide, lower heat release rate, total heat evolved and fire growth index was obtained under forced flaming fire conditions. Synergism was also seen in limiting oxygen index along with maintained V-0 classification in UL-94 tests. Regarding fire behaviour and flammability ratings, a large antimony oxide to calcium borate ratio provided ultimate fire retardant performance whereas magnitudes of synergism in average heat release rate and total heat evolved tend to be higher towards a smaller ratio. Effective heats of combustion and structural/morphological characterization of fire residues ascribed the underlying mechanism demonstrated by hydrated calcium borate to the formation of a consolidated residue that co-operates with the dominant gas phase fire retardancy originating from bromine-antimony synergism. It is thus proposed that coupling is achieved between gas phase and condensed phase modes of action increasing the overall fire retardant effectiveness. Along with enhanced fire retardancy, thermal stability and mechanical properties were satisfactorily maintained with the use of hydrated calcium borate at a variety of loading levels in compounds.  相似文献   

6.
Flame retardant composite materials   总被引:4,自引:0,他引:4  
Flame retardant additives offer a potential short-term solution for reducing the combustibility of composites, and hence the reduction of the associated hazards. A brief review of fire modelling was performed to identify suitable mathematical expressions with which the results of the experimental flame retardant investigation were analysed. These were then used in a limited trial to compare the experimental and calculated ignition parameters. The comparison of simple mathematical equations with fire test results indicated that their ability to reasonably reproduce the experimental ignition parameters of the flame retardant treated composites is dependent on the mechanism of flame retardant activity, particularly the stage of combustion at which it is designed to be active. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

8.
Phosphorus-containing styrene–acrylic copolymers are synthesized by free radical seeded emulsion polymerization with the monomers of MMA/St/BA/MAA and phosphorus-containing vinyl monomer (SIPOMER PAM100). The properties of copolymer films are characterized by water adsorption test, thermogravimetry, Fourier transform infrared spectroscopy (FTIR), and energy dispersive spectroscopy (EDS), etc. The copolymer emulsions are used as the binder in an intumescent coatings formulation, and the fire-retardant performances of the coatings are determined by an instrument which the furnace temperature is analoging the cellulose fire temperature. The water adsorption of copolymer film increases remarkably owing to the increasing of phosphoric acid group in the polymer chain. The thermal decomposition stability and thermal-oxidative decomposition stability of the copolymer are improved when PAM100 is introduced into its chain, which is strongly supported by the FTIR and EDS results of copolymer residual treated at different temperature. The EDS results also illustrate that the fire retardancy enhanced by PAM100 during combustion owing to the condensed-phase mechanism. The fire-retardant test results show that the intumescent coatings using StA-P1.5 copolymer emulsion as the binder obtains the best fire retardant performance. We suggested that StA-P1.5 presents the lower reactivity with the acid source (APP) in 275–400 °C, and the higher reactivity with APP when the temperature is greater than 500 °C would be benefit for the swelling–charring process and the final fire retardant performance. The exorbitant crosslinking in StA-P7 brings a negative effect on the fire-retardant performance of intumescent coatings, even if it introduces a densy swollen char layer.  相似文献   

9.
以K2S2O8-NaHSO3 氧化还原体系为引发剂, 采用水相沉淀自由基聚合法合成丙烯腈(AN)-醋酸乙烯酯(VAc)无规共聚物[P(AN-co-VAc)], 然后在KOH水溶液中进行P(AN-co-VAc)中VAc单元的选择性水解, 再与磷酸和尿素进行磷酰化反应, 制备无卤阻燃丙烯腈共聚物. 用核磁共振氢谱(1H NMR)、傅里叶变换红外光谱(FTIR)、差示扫描量热(DSC)和热重分析(TGA)对聚合物结构及热性能进行表征, 用凝胶渗透色谱(GPC)测定了P(AN-co-VAc)的分子量及其分布, 并利用FTIR和扫描电子显微镜(SEM)对无卤阻燃丙烯腈共聚物的炭残渣进行分析. 结果表明, VAc与AN发生共聚反应, 制得了P(AN-co-VAc), 随着KOH水溶液pH值的增大, P(AN-co-VAc)中VAc单元迅速水解; DSC分析结果表明, 随着共聚物中VAc单元含量的增大, 共聚物的环化放热分解峰值温度(Tp)增大, 当VAc单元的质量分数为25%时, Tp最大值高达328 ℃, 而阻燃丙烯腈共聚物的Tp高达340 ℃; TGA分析结果表明, 阻燃共聚物在800 ℃时的炭残渣量高达55%以上, 远高于P(AN-co-VAc)的41%, 具有良好的成炭性; 炭残渣的FTIR及SEM结果表明, 阻燃丙烯腈共聚物的阻燃属于凝聚相阻燃.  相似文献   

10.
通过溶液聚合法制得了阻燃性丙烯酸酯胶。研究了甲基丙烯酸2,4,6-三溴苯酯及引发剂用量,交联单体及反应温度、反应时间等对剥离强度的影响。研究了多元共聚丙烯酸酯胶的单体组成、合成工艺及其产品性能。结果表明,制得的胶粘剂在室温下剥离强度为19.5N/cm。  相似文献   

11.
In this paper the effect of aluminum trihydroxide (Al(OH)3—ATH) on the surface protection from fire for a styrene butadiene rubber (SBR) provided by ammonium polyphosphate ([NH4PO3]n—APP) is studied.The combustion behaviour is studied by means of Cone Calorimetric tests: a maximum fire retardant effect is observed with 10-12 wt.% of APP. ATH, less effective as fire retardant, has been added at 60 wt.% to reach comparable results as measured by cone calorimetry for 12 wt.% APP.Replacement of ATH in the best performing SBR + 12 wt.% of APP shows an antagonistic effect with as little as 1 wt.% of ATH.The combustion behaviour is explained with the mechanism of interaction between SBR, APP and ATH, in which formation of aluminum phosphates negatively affects the surface protection provided by the ultraphosphate surface coating formed on heating APP in SBR.  相似文献   

12.
With increasing interest in epoxy‐based carbon fiber composites for structural applications, it is important to improve the fire resistant properties of these materials. The fire resistant performance of these materials can be improved either by using high performance epoxy resin for manufacturing carbon fiber composite or by protecting the previously used epoxy‐based composite with some fire resistant coating. In this context, work is carried out to evaluate the fire resistance performance of recently emerged high performance polybenzimidazole (PBI) when used as a coating material. Furthermore, the effect of carbon nanofibers (CNFs) on fire resistant properties of inherently flame retardant PBI coating was studied. Thermogravimetric analysis of carbon/epoxy composite, unfilled PBI and nano‐filled PBI shows that the carbon/epoxy composite maintained its thermal stability up to a temperature of 400°C and afterwards showed a large decrease in mass, while both unfilled PBI and nano‐filled PBI have shown thermal stability up to a temperature of 575°C corresponding to only 11% weight loss. Cone calorimeter test results show that unfilled PBI coating did not improve the fire retardant performance of carbon/epoxy composite. Conversely, nano‐filled PBI coating has shown a significant improvement in fire retardant performance of the carbon/epoxy composite in terms of increased ignition time, reduced average and peak heat release rate and reduced smoke and carbon monoxide emission. These results indicate that addition of carbon nanofibers to inherently flame retardant coating can significantly be helpful for improving the fire resistance performance of composite materials even with low coating thickness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The choice of charring agent is one of the major issues for solvent‐free fireproof coatings. The effects of processing method and charring agent on the thermal insulation and fire resistance of the coatings were investigated in simulated fire scenarios. Dipentaerythritol (DPER), triazine agent (CFA), and pentaerythritol phosphate (PEPA) were compared as charring agent, and the thermal, combustion, fire resistance, and charring behaviors in different fire scenario were characterized for the fireproof coatings. Compared with high‐speed dispersing equipment, kneading processing equipment is favorable for improving the thermal stability and fire resistance of the coatings, because the stronger shearing force has promoted mixing and dispersion of the ingredients in solvent‐free fireproof coatings. As for charring agents, it is found that the fireproof coatings containing CFA or PEPA show better thermal and flame‐retardant performances. More residue was observed under nitrogen atmosphere in thermogravimetric analysis, less heat and smoke were released in cone calorimetry test. However, during the high temperature fire resistance test, their char layers were prone to delaminate while DPER‐containing coatings produced intact and stronger char layer with better heat insulation. For practical applications, the coating formulations need to be optimized to achieve both fire resistance and flame retardancy.  相似文献   

14.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

15.
基于锥形量热仪试验的聚合物材料火灾危险评价研究   总被引:7,自引:0,他引:7  
简述了锥形量热仪的试验原理,以聚合物材料锥形量热仪试验数据为基础,导出了火势增长指数(FGI)、放热指数(THRI6min)、发烟指数(TSPI6min)和毒性气体生成速率指数(ToxGI)4个评价聚合物材料火灾危险的参数,并利用这四个参数对ABS、PS、PVC、PA 4类16种商用塑料样品的火灾危险性逐项进行了分析评价.在此基础上,采用层次分析法的原理对样品的火灾危险进行了综合评价,结果表明,ABS、PS、PVC、PA四类样品的火灾综合危险依次减小.  相似文献   

16.
张健  刘纪达 《色谱》2018,36(7):693-699
通过对火场常见塑料载体与助燃剂混合燃烧残留物的分析,发展一种适用此类燃烧残留物的火灾物证鉴定方法,对火场中是否存在助燃剂进行判断,避免漏检情况的发生。应用热分析技术确定合适的闪蒸温度,在此温度下对塑料载体与助燃剂混合燃烧残留物进行闪蒸分析,并从实验条件选择、可行性分析、定性分析三方面对闪蒸技术进行评价。结果表明,闪蒸气相色谱-质谱(Flash GC-MS)技术可以检测到热塑性聚合物塑料载体与助燃剂混合燃烧残留物中残留的助燃剂特征组分,可对火场中是否存在过助燃剂进行辨别。闪蒸气相色谱-质谱技术丰富了现代火灾物证鉴定技术,能进一步辅助火灾物证鉴定工作,使鉴定结论更准确、可靠。  相似文献   

17.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

18.
A novel phosphazene cyclomatrix network polymer poly(cyclotriphosphazene-co- pentaerythritol) (PCPP) was synthesized and characterized based on an attempt to look for a high efficient and green intumescent flame retardant. A series of flame retardant polylactide (FR-PLA) composites containing PCPP were prepared by melt blending method. Thermal degradation behavior and combustion properties of FR-PLA composites were evaluated through thermogravimetric analysis, UL-94 experiments, limiting oxygen index and cone calorimeter tests. It is found that the weight of residues for FR-PLA composites improved greatly with the addition of PCPP. Additionally, PCPP show a high flame retardant efficiency for PLA, UL-94 V-0 could be passed only containing 5 wt% PCPP. Fourier transform infrared spectra and scanning electronic microscopy investigations reveal that the residual chars are compact and foaming containing P-O-C structure, which restrains the development of fire and increases the flame retardant properties.  相似文献   

19.
Effective testing methods are critical for developing new flame retardant textiles by the industry. However, the current testing methods all have limitations. In this research, we applied micro-scale combustion calorimetry (MCC) for evaluating the flammability of the cotton woven fabric treated with a traditional reactive organophosphorus flame retardant in combination with a synergistic nitrogen-containing additive and the nylon-6,6 woven fabric treated with a hydroxyl-functional organophosphorus oligomer and crosslinkers. We found that MCC is capable of differentiating small differences among the treated fabric samples with similar flammability. MCC is able to make quantitative measurement of the peak heat release rate, the most important parameter related to fire hazard of materials, of textile whereas such analysis is more difficult using cone calorimetry due to textile fabrics’ low thickness. By using the thermal combustion parameters measured by MCC, we were able to calculate the limiting oxygen index (LOI) of various treated cotton fabric samples with near-perfect agreement between the experimentally measured and the predicted LOI values of treated cotton fabrics. We also compared the capability of MCC and differential scanning calorimetry for analyzing flame retardant cotton textiles.  相似文献   

20.
A neutralized intumescent fire retardant (NIFR) has been synthesized in “one step and one pot” using a simple, novel and safe protocol. The fire retardant efficiency of the NIFR in polypropylene (PP) has been evaluated using usual fire testing methods. The results show that the NIFR is very effective. Moreover, we demonstrate that zinc borate exhibits a synergistic effect on fire retardant properties and apparently prevents migration of the additives through the polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号