首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-carbon bonds by hydrolytic enzymes   总被引:2,自引:0,他引:2  
Enzymes are efficient catalysts in synthetic chemistry, and their catalytic activity with unnatural substrates in organic reaction media is an area attracting much attention. Protein engineering has opened the possibility to change the reaction specificity of enzymes and allow for new reactions to take place in their active sites. We have used this strategy on the well-studied active-site scaffold offered by the serine hydrolase Candida antarctica lipase B (CALB, EC 3.1.1.3) to achieve catalytic activity for aldol reactions. The catalytic reaction was studied in detail by means of quantum chemical calculations in model systems. The predictions from the quantum chemical calculations were then challenged by experiments. Consequently, Ser105 in CALB was targeted by site-directed mutagenesis to create enzyme variants lacking the nucleophilic feature of the active site. The experiments clearly showed an increased reaction rate when the aldol reaction was catalyzed by the mutant enzymes as compared to the wild-type lipase. We expect that the new catalytic activity, harbored in the stable protein scaffold of the lipase, will allow aldol additions of substrates, which cannot be reached by traditional aldolases.  相似文献   

2.
3.
Ethene was copolymerized with styrene using five different methylalumoxane (MAO) activated half-sandwich complexes of the general formula Me2Si(Cp)(N R)MCl2, varying the substituents on the cyclopentadienyl ring and the substituent on the amide (Cp = tetramethylcyclopentadiene CBT , 1-indenyl IBT , 3-trimethylsilyl-1-indenyl SIBT , or fluorenyl FBZ , R = tert-butyl (complexes CBT, IBT, SIBT, FBZ ) or benzyl CAT ), as well as the metal center (M = Ti, except FBZ : M = Zr). Polymerization behavior was analyzed with respect to catalyst activity and polymerization kinetics, styrene incorporation, copolymer microstructure, and molecular weight. All complexes produced random poly(ethene-co-styrene) without any regioregular or stereoregular microstructure. Complex CBT showed the highest catalytic activity, the fluorenyl-substituted complex FBZ produced the highest molecular weight polymer, and complexes SIBT and CAT promoted high styrene incorporation. Cp-substitution pattern influenced deactivation of the catalytic system with bulky substituents of the Cp-ring slowing down deactivation at the expense of styrene incorporation. Moreover, deactivation was accelerated with increasing styrene concentration. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1571–1578, 1997  相似文献   

4.
Gradén H  Olsson T  Kann N 《Organic letters》2005,7(16):3565-3567
Iron-mediated methodology for the formation of carbon-carbon and carbon-heteroatom sp(3) bonds on solid phase has been developed. Treatment of a polymer-bound cationic iron cyclohexadienyl complex with carbon, oxygen, nitrogen, and phosphorus nucleophiles, followed by cleavage with amines and subsequent decomplexation, yielded 18 different cyclohexadienoic acid amides of high purity. [reaction: see text]  相似文献   

5.
The disiloxane-bridged zirconocene complexes, tetramethyldisiloxanediylbis (cyclopentadienyl)zirconium dichloride and tetramethyldisiloxanediylbis(cyclopentadienyl) dimethylzirconium initiate the homopolymerization of ethene as well as the copolymerization of ethene and α-olefin with a modified methylaluminoxane as cocatalyst. The catalyst systems give resonable activity but the molecular weight of polyethene decreases drastically with increasing polymerization temperature.  相似文献   

6.
Carbon-carbon bonding made easy   总被引:1,自引:0,他引:1  
The palladium-catalyzed cross-coupling reaction between organoboranes and organic electrophiles in the presence of base was first developed 30 years ago. It offers a powerful and general methodology for forming carbon-carbon bonds. The scope of the reaction has continued to evolve and broaden to meet modern synthetic requirements.  相似文献   

7.
The complex [PdH(Cl)(PBu3)2], generated in situ by addition of one equivalent of NaBH4 to [PdCl2(PBu3)2], is a good catalyst precursor for the addition of methyl formate to ethene. Extra carbon monoxide is not required, and methyl propanoate is produced with high selectivity.  相似文献   

8.
9.
The complexes formed by ethene with nitric and nitrous (trans and cis) acids have been investigated by ab initio (SCF and MP2) and B3LYP calculations with 6-311++G(d,p) basis set. Full geometry optimisation has been performed for the complexes studied. The most stable structures of the complexes are established. Bearing in mind the corrected values of the dissociation energy the studied hydrogen-bonded complexes can be ordered as follows: C(2)H(4)...HONO(2)>C(2)H(4)...HONO-trans>C(2)H(4)...HONO-cis. In the complexes the acids act as proton donors forming the pi-type of hydrogen bond with ethene. The predicted changes in the vibrational characteristics (vibrational frequencies and infrared intensities) arising from the hydrogen bonding are in good agreement with the experimentally measured. The predicted frequency shift of the stretching OH vibration in the nitric acid is largest (-210 cm(-1)), followed by the shifts in the trans-HONO (-141 cm(-1)) and cis-HONO (-109 cm(-1)). The calculations predict an increase of the IR intensity of the stretching O-H vibration in the complexes from 6 to 10 times.  相似文献   

10.
11.
Alpha-tert-butoxystyrene [H2C=C(OBut)Ph] reacts with alpha-bromocarbonyl or alpha-bromosulfonyl compounds [R1R2C(Br)EWG; EWG =-C(O)X or -S(O2)X] to bring about replacement of the bromine atom by the phenacyl group and give R1R2C(EWG)CH2C(O)Ph. These reactions take place in refluxing benzene or cyclohexane with dilauroyl peroxide or azobis(isobutyronitrile) as initiator and proceed by a radical-chain mechanism that involves addition of the relatively electrophilic radical R1R2(EWG)C* to the styrene. This is followed by beta-scission of the derived alpha-tert-butoxybenzylic adduct radical to give But*, which then abstracts bromine from the organic halide to complete the chain. Alpha-1-adamantoxystyrene reacts similarly with R1R2C(Br)EWG, at higher temperature in refluxing octane using di-tert-amyl peroxide as initiator, and gives phenacylation products in generally higher yields than are obtained using alpha-tert-butoxystyrene. Simple iodoalkanes, which afford relatively nucleophilic alkyl radicals, can also be successfully phenacylated using alpha-1-adamantoxystyrene. O-Alkyl O-(tert-butyldimethylsilyl) ketene acetals H2C=C(OR)OTBS, in which R is a secondary or tertiary alkyl group, react in an analogous fashion with organic halides of the type R1R2C(Br)EWG to give the carboxymethylation products R1R2C(EWG)CH2CO2Me, after conversion of the first-formed silyl ester to the corresponding methyl ester. The silyl ketene acetals also undergo radical-chain reactions with electron-poor alkenes to bring about alkylation-carboxymethylation of the latter. For example, phenyl vinyl sulfone reacts with H2C=C(OBut)OTBS to afford ButCH2CH(SO2Ph)CH2CO2Me via an initial silyl ester. In a more complex chain reaction, involving rapid ring opening of the cyclopropyldimethylcarbinyl radical, the ketene acetal H2C=C(OCMe2C3H5-cyclo)OTBS reacts with two molecules of N-methyl- or N-phenyl-maleimide to bring about [3 + 2] annulation of one molecule of the maleimide, and then to link the bicyclic moiety thus formed to the second molecule of the maleimide via an alkylation-carboxymethylation reaction.  相似文献   

12.
13.
Ethyl 1-butynylphosphonate reacts with Cp(2)ZrCl(2)/2n-BuLi to give a three-membered zirconacycle that readily inserts aldehydes. Hydrolysis of the intermediate five-membered zirconacycles leads to two products, 4 and 5. In the major product, 5, the aldehyde inserts into C2 of the zirconacycle, while in the minor product, 4, the aldehyde inserts into C1. Products 5 are obtained in 38-75% isolated yields. Products 4 are obtained in approximately 1-12%. Essentially, only compounds 5 are produced with ortho-substituted aldehydes. The regio- and stereochemistry of 4 and 5 were determined by (3)J(PH), (2)J(PC2), and (3)J(PC3) coupling constants.  相似文献   

14.
The irradiation of ruthenium-sulfur dioxide complexes of general formula trans-[Ru(II)(NH(3))(4)(SO(2))X]Y with laser light at low temperature results in linkage isomerization of SO(2), starting with eta(1)-planar S-bound to eta(2)-side S,O-bound SO(2). The solid-state photoreaction proceeds with retention of sample crystallinity. Following work on trans-[Ru(NH(3))(4)Cl(eta(1)-SO(2))]Cl and trans-[Ru(NH(3))(4)(H(2)O)(eta(1)-SO2)](C(6)H(5)SO(3))(2) (Kovalevsky, A. Y.; Bagley, K. A.; Coppens, P. J. Am. Chem. Soc. 2002, 124, 9241-9248), we describe photocrystallographic, IR, DSC, and theoretical studies of trans-[Ru(II)(NH(3))(4)(SO(2))X]Y complexes with (X = Cl(-), H(2)O, or CF(3)COO(-) (TFA(-))) and a number of different counterions (Y = Cl(-), C(6)H(5)SO(3)(-), Tos(-), or TFA(-)). Low temperature IR experiments indicate the frequency of the asymmetric and symmetric stretching vibrations of the Ru-coordinated SO(2) to be downshifted by about 100 and 165 cm(-1), respectively. Variation of the trans-to-SO(2) ligand and the counterion increases the MS2 decay temperature from 230 K (trans-[Ru(II)(NH(3))(4)(SO(2))Cl]Cl) to 276 K (trans-[Ru(II)(NH(3))(4)(SO(2))(H(2)O)](Tos)(2)). The stability of the MS2 state correlates with increasing sigma-donating ability of the trans ligand and the size of the counterion. Quantum chemical DFT calculations indicate the existence of a third eta(1)-O-bound (MS1) isomer, the two metastable states being 0.1-0.6 eV above the energy of the ground-state complex.  相似文献   

15.
16.
The oxidative photofragmentations of a series of 1,2-diamines have been studied in reaction with photoexcited electron acceptors under a variety of conditions. All the diamines were found to undergo a clean two electron redox reaction (in the presence of trace amounts of water) to produce after cleavage, two free amines, two aldehydes, and the reduced acceptor. Investigation of the role of variables (solvent, acceptor, temperature, isotope effects, etc.) on the quantum yields for diamine fragmentation leads to a mechanistic picture in which the critical step in the reaction is an unassisted fragmentation. Although formally similar to the photoreactions of previously studied aminoalcohols, the photoinduced electron transfer fragmentation reaction of 1,2-diamines shows key mechanistic differences and is apparently both a more general reaction and significantly more rapid in several cases.  相似文献   

17.
Rhodium(II)-catalyzed decomposition of diazoketones 1 and 5 bearing a cyclic dithioacetal, in the presence of aldehyde and ClTi(Oi-Pr)(3), afforded both or one of the C=C-bonded products, i.e., ring-enlarged enone 2 and ring-transformed thiophenone 3, that were formed between aldehyde and intermediate bicyclosulfonium ylide. The stereochemistry of the exocyclic C=C bond in the products was exclusively Z. The sulfonium atom that transiently composed the ylide was incorporated into products, but no oxirane was formed.  相似文献   

18.
19.
20.
The silyl ethers 3-But-2-(OSiMe3)C6H3CH=NR (2a-e) have been prepared by deprotonation of the known iminophenols (1a-e) and treatment with SiClMe3 (a, R = C6H5; b, R = 2,6-Pri2C6H3; c, R = 2,4,6-Me3C6H2; d, R = 2-C6H5C6H4; e, R = C6F5). 2a-c react with TiCl4 in hydrocarbon solvents to give the binuclear complexes [Ti{3-But-2-(O)C6H3CH=N(R)}Cl(mu-Cl3)TiCl3] (3a-c). The pentafluorophenyl species 2e reacts with TiCl4 to give the known complex Ti{3-But-2-(O)C6H3CH=N(R)}2Cl2. The mononuclear five-coordinate complex, Ti{3-But-2-(O)C6H3CH=N(2,4,6-Me3C6H2)}Cl3 (4c), was isolated after repeated recrystallisation of 3c. Performing the dehalosilylation reaction in the presence of tetrahydrofuran yields the octahedral, mononuclear complexes Ti{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (5a-e). The reaction with ZrCl4(THF)2 proceeds similarly to give complexes Zr{3-But-2-(O)C6H3CH=N(R)}Cl3(THF) (6b-e). The crystal structures of 3b, 4c, 5a, 5c, 5e, 6b, 6d, 6e and the salicylaldehyde titanium complex Ti{3-But-2-(O)C6H3CH=O}Cl3(THF) (7) have been determined. Activation of complexes 5a-e and 6b-e with MAO in an ethene saturated toluene solution gives polyethylene with at best high activity depending on the imine substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号