首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonfluorescent 4,4′,5,5′-tetramethyl- and 4,5,4′,5′-bistetramethylene biimidazol-2-yls 5 and 6 combined with boron trifluoride to give the tetramethyl and bistetramethylenebiimidazol-2-yl–BF2 complexes 9 and 10 isolated as strongly fluorescent BF3 salts, λf (dichloromethane): 377 nm Φ 0.93 and 386 nm Φ 0.90. Similarly, fluorescent bibenzimidazol-2-yl 7 , λf (ethanol), 370 nm Φ 0.14, gave a BF2 complex 11 isolated as a BF3 salt λf (ethanol), 417 nm Φ 0.68.  相似文献   

2.
A meso–meso β‐β β‐β triply linked subporphyrin dimer 6 was synthesized by stepwise reductive elimination of β‐to‐β doubly PtII‐bridged subporphyrin dimer 9 . Dimer 6 was characterized by spectroscopic and electrochemical measurements, theoretical calculations, and picosecond time‐resolved transient absorption spectroscopy. X‐ray diffraction analysis reveals that 6 has a bowl‐shaped structure with a positive Gaussian curvature. Despite the curved structure, 6 exhibits a remarkably red‐shifted absorption band at 942 nm and a small electrochemical HOMO–LUMO gap (1.35 eV), indicating an effectively conjugated π‐electronic network.  相似文献   

3.
Treatment with a mixture of formic and hydrobromic acids converted ethyl 3,4-diethyl-5-methyl-pyrrole-2-carboxylate 7a to 3,3′,4,4′-tetraethyl-5,5′-dimethylpyrromethene hydrobromide 8a presumably via the condensation of α-unsubstituted and α-formylpyrrole intermediates 7c and 7e formed in situ. The corresponding 6-cyanohexaalkylpyrromethane 9a was obtained by the addition of hydrogen cyanide to the pyrromethene 8a and was oxidized with bromine to an unstable pyrromethene 10a , an intermediate converted to 1,2,6,7-tetraethyl-3,5-dimethyl-8-cyanopyrromethene–BF2 complex 3 , (PM TEDC), λlas (plastic) 613–639 nm, in a reaction with boron trifluoride etherate. Ethyl 3,4,5-trimethylpyrrole-2-carboxylate 7b was similarly converted to 1,2,3,5,6,7-hexamethyl-8-cyanopyrromethene–BF2 complex 4 , (PM HMC), λlas (plastic) 615–639 nm. Immediately after formation by a condensation between propionyl chloride and 2,4-dimethyl-3-cyanopyrrole 16 , unstable 3,3′,5,5′-tetramethyl-6-ethyl-4,4′-dicyanopyrromethene hydrochloride 17 was treated with boron trifluoride etherate to give 1,3,5,7-tetramethyl -2,6-dicyano-8-ethylpyrromethene–BF2 complex 18 , λlas (ethanol) 540–565 nm.  相似文献   

4.
5.
6.
7.
8.
X-ray diffraction patterns have been taken as a function of time and temperature on a sample of polypropylene held under high pressure (4.14 kbar) for 180 hr. at a temperature of 248°C. and subsequently cooled to room temperature. The molded sample initially crystallizes in the triclinic γ–phase but transforms to the γ–phase at elevated temperatures. The rate of conversion from γ to α is a function of time and temperature and tends to approach a constant value with increasing time. The nature of the thermal changes occurring in the sample was also studied by differential scanning calorimetry. It appears that at low scan speeds, there is a solid–solid transformation from the α-phase to the γ–phase, but at high scan speeds, the γ–phase melts without conversion to the α-phase.  相似文献   

9.
10.
Pyrromethene–BF2 complexes (P–BF2) 7 were obtained from α-unsubstituted pyrroles 5 by acylation and condensation to give intermediate pyrromethene hydrohalides 6 followed by treatment with boron trifluoride etherate. Conversion of ethyl α-pyrrolecarboxylates 4 to α-unsubstituted pyrroles 5 was brought about by thermolysis in phosphoric acid at 160°C, or by saponification followed by decarboxylation in ethanolamine at 180°C, or as unisolated intermediates in the conversion of esters 4 to pyrromethene hydrobromides 6 by heating in a mixture of formic and hydrobromic acids. Addition of hydrogen cyanide followed by dehydrogenation by treatment with bromine converted 3,5,3′,5′-tetramethyl-4,4′-diethylpyrromethene hydrobromide 9 to 3,5,-3′,5′-tetramethyl-4,4′-diethyl-6-cyanopyrromethene hydrobromide 6bb , confirmed by the further conversion to 1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrromethene–BF2 complex 7bb on treatment with boron trifluoride etherate. An alternation effect in the relative efficiency (RE) of laser activity in 1,3,5,7,8-pentamethyl-2,6-di-n-alkylpyrromethene–BF2 dyes depended on the number of methylene units in the n-alkyl substituent, -(CH2)nH, to give RE ≥ 100 when n = 0,2,4 and RE 65, 85 when n = 1,3. (The RE 100 was arbitrarily assigned to the dye rhodamine 6G). The absence of fluorescence and laser activity in 1,3,5,7-tetramethyl-2,6-diethyl-8-isopropylpyrromethene–BF2 complex 7p and a markedly diminished fluorescence quantum yield (Φ 0.23) and lack of laser activity in 1,3,5,7-tetramethyl-2,6-diethyl-8-cyclohexylpyrromethene–BF2 complex 7q were attributed to molecular nonplanarity brought about by the steric interference between each of the two bulky 8-substituents with the 1,7-dimethyl substituents. An atypically low RE 20 for a peralkylated dye without steric interference was observed for 1,2,6,7-bistrimethylene-3,5,8-trimethylpyrromethene–BF2 complex 7j . Comparisons with peralkylated dyes revealed a major reduction in RE 0–40 for the six dyes 7u–z lacking substitution at the 8-position. Low laser activity RE was brought about by functional group (polar) substitution in the 2,6-diphenyl derivative 7I , RE 20, and the 2,6-diacetamido derivative 7m , RE 5, of 1,3,5,7,8-pentamethylpyrromethene–BF2 complex (PMP–BF2) 7a and in 1,7-dimethoxy-2,3,5,6,8-pentamethylpyrromethene–BF2 complex 7n , RE 30. Diethyl 1,3,5,7-tetramethyl-8-cyanopyrromethene-2,6-dicarboxylate–BF2 complex, 7aa , and 1,3,5,7-tetramethyl-2,6-diethyl-8-cyanopyrromethene–BF2 complex, 7bb , offered examples of P–BF2 dyes with electron withdrawing substituents at the 8-position. The dye 7aa , λlas 617 nm, showed nearly twice the power efficiency that was obtained from rhodamine B, λlas 611 nm.  相似文献   

11.
The α to γ transition that occurs in nylon 6 upon iodine treatment was investigated by infrared spectroscopy, differential thermal analysis, and x-ray diffraction techniques. Thin films of nylon (0.2 mil) were treated in either iodine–potassium iodide aqueous solution or in iodine vapor. Very short treatment times, in the order of 30 sec, were found to effect the transition when a solution 0.5M with respect to iodine was used. The infrared spectra of the iodine nylon complexes formed from either the α- or γ-nylon 6 treated in vapor or dissolved iodine were all similar. This is an indication that molecular iodine is the active species in forming the complex. The temperature of the washing solution used to remove the iodine from the nylon determines whether an α-nylon 6 or γ-nylon 6 is obtained from the complex after washing. Nylon 6 plaque surfaces and thin films are similar in their behavior towards the iodine treatment. The γ-nylon 6 is a stable modification at all temperatures below its melting point. The conversion of the γ form back to the α modification can occur only if the hydrogen bonding is severely affected, e.g., by phenol treatment, iodine treatment, melting, etc. Infrared spectroscopy provided no evidence for an α–γ transition in nylon 6 on heating the sample continuously through its melting point. The shapes of the melting peaks in the above two modifications of nylon 6 were sufficiently different to provide a means of identifying the two crystalline forms.  相似文献   

12.
A γ-phase to α-phase transformation in a specimen of isotactic polypropylene crystallized under conditions of high pressure was induced by drawing at 100°C. X-ray studies showed that the unoriented component remained in the γ-phase, and that the oriented component was found only in the α-phase. This evidence supports a previous suggestion that the phase transformation is martensitic in character. The consequences of such an assumption are discussed. The role of dislocations in polymeric systems is generally believed to be not too significant, but since martensitic reactions involve cooperative movements of atoms, an exception in this case is suggested. A possible mechanism for the phase transformation is suggested.  相似文献   

13.
14.
The study was focused on the structure–activity relationship of some newly synthesized hexacoordinated dimethyltin(IV) complexes of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones. These complexes were screened for their antibacterial activity against a Gram‐negative bacterium (Pseudomonas aeruginosa) and Gram‐positive bacteria (Streptomyces griseus, Staphylococcus aureus, Bacillus subtilis) and the results were compared with those of a standard antibacterial drug. Some of the complexes were also screened for their antifungal activity against various fungi (Aspergillus niger, A. flavus, Trichoderma viride, Fusarium oxysporum) and were found to be active. These new hexacoordinated complexes of dimethyltin(IV) were generated by reactions of dimethyltin(IV) dichloride and sodium salts of fluorinated β‐diketone/β‐diketones and sterically congested heterocyclic β‐diketones in 1:1:1 molar ratio in refluxing dry benzene. Plausible structures of these complexes were suggested with the aid of physicochemical and spectroscopic studies. 119Sn NMR spectral data revealed the presence of a hexacoordinated tin centre in these dimethyltin(IV) complexes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Highly enantioselective catalytic asymmetric epoxidation of α,β-unsaturated carboxylic acid imidazolides and simple amides was developed. In the presence of 5–10 mol% of lanthanide–BINOL complexes, the reaction proceeded smoothly with high substrate generality. In particular, in the cases of α,β-unsaturated amides, there was nearly perfect enantioselectivity (>99% ee). The corresponding epoxides were successfully transformed into many types of useful chiral compounds such as α,β-epoxy esters, α,β-epoxy amides, α,β-epoxy aldehydes, α,β-epoxy β-keto ester, and α- and β-hydroxy carbonyl compounds. B3LYP density functional studies were performed to predict substrate reactivity.  相似文献   

17.
The present paper reports the crystal structures of two short phosphonotripeptides (one in two crystal forms) containing one ΔPhe (dehydrophenylalanine) residue, namely dimethyl (3‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}propyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Abu3PO3Me2, C21H32N3O7P, (I), and diethyl (4‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}butyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Nva3PO3Et2, as the propan‐2‐ol monosolvate 0.122‐hydrate, C24H38N3O7P·C3H8O·0.122H2O, (II), and the ethanol monosolvate 0.076‐hydrate, C24H38N3O7P·C2H6O·0.076H2O, (III). The crystals of (II) and (III) are isomorphous but differ in the type of solvent. The phosphono group is linked directly to the last Cα atom in the main chain for all three peptides. All the amino acids are trans linked in the main chains. The crystal structures exhibit no intramolecular hydrogen bonds and are stabilized by intermolecular hydrogen bonds only.  相似文献   

18.
19.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

20.
An ephedrine-derived morpholine dione is employed in the synthesis of chiral alkylidene morpholinones that are efficiently converted to β-substituted α,γ-dihydroxy butyramides, precursors of the corresponding butyrolactones. Enantioselective synthesis of a spiro analog of pantolactone as well as a naturally occurring pantolactone homolog is achieved with this protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号