首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pressure-volume-temperature (PVT) properties of blends of poly(2,6-dimethyl-1,4-phenylene ether) (PPO) with polystyrene (PS) have been studied experimentally in both the glassy and melt states at 0, 20, 40, 50, 60, 80, and 100% PPO content. In all compositions a strong glass transition was observed varying linearly with composition. For all but the 40% PPO composition this was the only transition, indicating molecular compatibility of the components in these blends. The 40% PPO composition showed a very weak second transition near the glass transition of pure PS. A small amount of phase separation may have occurred in this blend. The data for the glassy and melt states were fitted to an empirical equation of state based on the Tait equation. The volume of the melts at constant pressure and temperature showed a virtually linear dependence on composition. Any negative excess volume of mixing compatible with the data would have to be very small, smaller than expected from previous measurements in the glassy state. Various properties relating to the glassy and melt states and to the glass transition were evaluated and are discussed as a function of composition. It was found that most properties of the glasses could not be modeled by simple functions of composition.  相似文献   

2.
The thermodynamic properties of crystalline and amorphous poly(2,6-dimethyl-1,4-phenylene ether) (PPO
  • 1 Registered trademark of General Electric Company.
  • polymer, General Electric Co.) have been studied calorimetrically between 80 and 570°K. The calculated configurational entropy of this polymer, of similar magnitude to other glass-forming liquids, is consistent with the combination of an unusually high ratio of Tg/Tm, and a low melting entropy.  相似文献   

    3.
    Poly(2,6-dimethyl-1,4-phenylene ether) (I) was metalated with butyllithium in tetrahydrofuran and with the N,N,N′,N′-tetramethylethylenediamine complex of butyllithium in a variety of solvents. In these cases, metalation occurred at both the ring and side chain positions, the former being preferred initially. Subsequently, there was an isomerization in favor of the side chain. At 25°C, there is no significant amount of polymer scission or crosslinking during metalation, but some crosslinking occurs on derivatizing with dimethyl sulfate and trimethylchlorosilane for high extents of ring metalation. With sodium and potassium alkyls, only side-chain metalation was observed. The metalated polymer reacts as a typical organometallic, allowing polymer modification by a wide variety of reactions.  相似文献   

    4.
    The mass spectral characteristics of poly(2,6-dimethyl-1,4-phenylene ether), its monomer (2,6-xylenol), and its dimer (3,5-dimethyl-4-hydroxyphenyl 2,6-xylyl ether) have been determined. The monomer and dimer show peaks for the molecular ions (122; 242 amu) and degradation patterns similar to those of o-methylaryl ethers. Loss of methyl and cleavage of the ether with transfer of an o-methyl hydrogen are observed. Metastable transitions are recorded corresponding to a loss of 15 from 122 and 56 from 107 amu (xylenol) and of 151 from 242 and 40 from 104 amu (ether). The polymer volatilizes readily at 380–400°C. (TGA shows rapid weight loss at 400°C) and gives sets of peaks at (N × 120) ± 14 up to 1080 (N = 9). The principal peak is at (N × 120) + 2, calibrated against PFA, and this is attributed to an ion of a volatilized oligomer. The oligomer is either present as such, is formed in a degradation process involving an ether redistribution, or is formed in a hydrogen transfer process in the ether cleavage reaction.  相似文献   

    5.
    The thermal degradation of poly(2,6-dimethyl-1,4-phenylene ether) has been investigated to 1000°C in an inert atmosphere. X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry were employed to study the physical changes in the polymer, and vapor-phase chromatography, infrared spectroscopy, and mass spectrometric thermal analysis were used to elucidate the chemical aspects of the degradation process. It was found that degradation occurs in two steps: (1) a rapid exothermic process occurs between 430 and 500°C, leading to the evolution of phenolic products, water, and a black, highly crosslinked residue, and (2) a slower, char-forming process occurs above 500°C, characterized by the evolution of methane, carbon monoxide, and hydrogen. The chars formed in process 2 were found by x-ray analysis to be amorphous. The infrared spectrum of a sample heated to 510°C is nearly identical with that of the starting polymer, indicating that oxidative reactions are not important in the first process. The data for the low-temperature process are consistent with a thermal degradation scheme based on the radical-redistribution reaction of polyphenylene ethers and/or the degradation of o-benzylphenols formed by the thermal rearrangement of o-methyl diphenyl ethers. The char-forming process is best explained by simultaneous operation of the Szwarc mechanism of toluene pyrolysis, producing hydrogen and methane and reactions that cleave the aromatic rings and produce carbon monoxide.  相似文献   

    6.
    Lithiated poly(2,6-dimethyl-1,4-phenylene ether) has been used as an initiator for the graft polymerization of isoprene, methyl methacrylate, hexamethylcyclotrisiloxane, and phenyl isocyanate with the use of toluene and tetrahydrofuran as solvents. The products were examined by gel-permeation chromatography for evidence of homopolymerization and graft polymerization. The composition of the graft copolymers was determined by NMR, and for isoprene and hexamethylcyclotrisiloxane, termination by trialkylchlorosilanes enabled chain lengths to be determined by NMR. The use of toluene gave rise to some homopolymerization, but with tetrahydrofuran, only hexamethylcyclotrisiloxane gave homopolymer. In all cases, graft copolymers were formed. With isoprene and methyl methacrylate, soluble graft copolymers were formed in good yield. In the former case approximately 60% 3,4 and 40% 1,4 addition was found. In the latter case 1,1-diphenylethylene was used to reduce crosslinking, in its absence, methyl methacrylate gave only crosslinked gels in tetrahydrofuran. Hexamethylcyclotrisiloxane added only one molecule per lithium on the polymer, the remainder giving homopolymer. Phenyl isocyanate gave some soluble graft copolymer in toluene, but only crosslinked products were obtained when tetrahydrofuran was used as reaction solvent.  相似文献   

    7.
    The differential orientation of polymer chains has been measured in polystyrene (PS)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) compatible blends. Density measurements are reported as a function of binary blend composition at 23°C. Drawing was performed by solid-state coextrusion. PS/PPO blend compositions of 90/10 and 75/25 were drawn within sandwiches of polyethylene at 145°C and isotactic polypropylene at 155°C, i.e. at ca. 25°C above the glass transition temperatures of the two blends. The change in Fourier-transform infrared dichroisms on drawing these blends was measured at 906 and 1190 cm?1, corresponding to predominantly PS and PPO, respectively. The orientation of PS and PPO was observed as a function of draw ratio λ in the range 1–5; orientations increased with λ for both PS and PPO in both blends but to different degrees. Both polymers decreased in orientation with increasing PPO content. Annealing with fixed ends showed that the PPO chains disorient more slowly than those of PS. All binary systems were found to be amorphous and compatible.  相似文献   

    8.
    Due to the establishment of common thermoplastics such as polyethylene, polypropylene and polytetrafluoroethylene as substrates for modern electrets, research in this field has seen significant progress in recent decades. However, there still is a need for new substrate materials in order to boost modern-day electret applications. Important targets for a further development are electret substrates with a tailored balance between cost and performance especially at elevated temperatures. In this study, experimental results concerning the charge storage behaviour of poly(2,6-dimethyl-1,4-phenylene ether) (PPE) films and its blends with polystyrene (PS) are presented. As demonstrated, the good electret performance of neat PPE can be further enhanced by the addition of suitable weight fractions of PS, a synergistic electret behaviour that is related to morphological blend parameters such as the packaging density and the presence of PS micro-heterogeneities in the PPE/PS matrix. Most importantly, the results highlighted in this study clearly demonstrate the potential of blending as a promising approach towards satisfying the demands of tomorrows’ electret applications.  相似文献   

    9.
    Styrene has been grafted onto poly(2,6-dimethyl-1,4-phenylene ether) (I) with the use of lithiated I as an initiator. In benzene solution, solvent metalation resulted in some polystyrene homopolymer. In tetrahydrofuran, however, only graft copolymer was formed. By forming a derivative with trimethylchlorosilane and examining by NMR, it was possible to establish the proportion of lithium scavenged by impurities, the amount of polymeric lithium which reacted with styrene, and the amount which did not. The chain length of the grafted polystyrene was also calculated. No crosslinking was found, except where a high ratio of lithium to styrene resulted in some unreacted ring-metalated polymer. In this case only, reaction with trimethylchlorosilane causes some crosslinking.  相似文献   

    10.
    11.
    Blends of organosilicon polymers with polystyrene, PS, and poly(2,6-dimethyl-1,4-phenylene oxide), PPE, were investigated by transmission electron microscopy and differencial scanning calorimetry. Blends with poly(tetramethylsilphenylenesiloxane), PTMPS, showed a morphology characterized by globular domains dispersed in the organic matrix. An apparent homogeneous system was observed when poly(dimethylsilphenylene), PDSP, was mixed with PPE. A crystalline phase was found in samples with a higher PDSP content. The morphology of PS/PDSP blends with low PDSP content showed a dendritic phase dispersed in the PS-rich matrix. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2609–2616, 1997  相似文献   

    12.
    Blends of polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide) that cover the entire compositional range have been subjected to the action of singlet oxygen from microwave discharge, dye-sensitized reaction, and photochemical oxidation. With the applied analytical technique, which consisted of infrared (IR) analysis, including ATR technique and a spectroscopic method combined with chemical analysis for hydroperoxide groups, it was not possible to detect any effect of the singlet oxygen treatment. For that reason singlet oxygen does not appear to be important to the initiation of the photooxidation of these blends. In connection with photochemical oxidation the interaction observed between the two components probably involves energy transfer from PS to PPO. This interaction results in the enhancement of reactions in PPO that lead to greater carbonyl group formation and crosslinking. Simultaneously, the probability of chain scission in the PS is lowered with increased PPO content, found by determining the changes in the molecular weights.  相似文献   

    13.
    Summary Poly(2,6-dimethyl-1,4-phenylene)oxide crystals obtained from 0.1%-pinene solutions by isothermal growth at temperatures from 80–90 as well as 100 °C, were investigated by optical and X-ray diffraction techniques. A study has been made by differential scanning calorimetry in order to measure the melting point, glass transition and melting point depression temperatures of mixtures of the polymer with-chloro-naphthalene.The densities of the dry mats of single crystals were measured by a flotation method.
    Zusammenfassung Poly(2,6-dimethyl-1,4-phenylen)oxid Kristalle, die aus 0,1% igen-Pinen-Lösungen durch isothermes Wachstum bei Temperaturen von 80–90 sowie 100 °C erhalten wurden, wurden optisch und röntgenographisch untersucht. Mit der Differential-scanning-Kalorimetrie ergaben sich die Werte des Schmelzpunkts, der Glastemperatur und der Schmelzpunktdepressionen von Mischungen des Polymeren mit-Chlornaphthalin. Die Dichten der trockenen Matten aus Einkristallen wurde mit der Flotationsmethode gemessen.
      相似文献   

    14.
    Thermodynamic properties of semicrystalline and completely amorphous samples of poly(2,6-dimethoxy-1,4-phenylene ether) have been studied by DSC-calorimetry. A very low entropy of fusion indicates that only minor conformational changes take place during the melting. The low value of the configurational entropy of the glass transition is due to the faci that the theoretical second order transition is closely related to the glass transition point.  相似文献   

    15.
    A recent theory of multicomponent fluids is applied for the first time to a compatible binary polymer blend. Good accord between the experimental pressure-volume-temperature measurements over the whole range of compositions by Zoller and theoretical predictions obtains. In particular, satisfactory predictions of high pressure from low-pressure information result. From the interplay between experiment and theory, the scaling quantities and thus the characteristic self- and cross interaction parameters are derived. The excess volumes are discussed and estimates of excess enthalpies presented. The theory predicts the actual enthalpy of the components or mixtures once the scaling parameters have been determined by means of volume-temperature data at atmospheric pressure. Enthalpy measurements to test these predictions are highly desirable.  相似文献   

    16.
    Cracks have been propagated in double-cantilever beam specimens of poly(2,6-dimethyl-1,4-phenylene oxide), polystyrene, and their blends. The plane-strain crack propagation energy varies with crack speed, distance from crack arrest following an instability, molecular weight, and blend composition. Auxiliary measurements of moduli, yield properties, and craze initiation resistances at crack tips were carried out together with microscopic studies of the crack-tip plastic zone. Fracture instabilities are rationalized in terms of the interplay of shear deformation with crazing in the crack-tip plastic zone. Negative deviations from ideal behavior in the crack propagation resistance of the blends are rationalized in terms of the concurrent negative deviation in crazing resistance which in turn is thought to be related to positive deviations in shear resistance and thus to negative volumes and heats of mixing.  相似文献   

    17.
    18.
    The chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) by bromination of the aromatic ring, followed by displacement of bromine with substituted acetylenes, has been investigated. This pathway leads to a series of novel copolymers containing substituted alkynes on the aromatic ring. The degree of bromination and alkynylation, determined by 1H-NMR, was in the range of 20–85 and 15–80%, respectively. 13C-NMR and FT-IR unambiguously elucidated the structure of the alkynylated polymers. Finally, thermal properties and permeation properties of substituted PPO to carbon dioxide, methane, oxygen, and nitrogen are reported. © 1994 John Wiley & Sons, Inc.  相似文献   

    19.
    Molecular relaxation behavior in terms of the α, β, and γ transitions of miscible PS/PPO blends has been studied by means of DMTA and preliminary work has been carried out using DSC. From DSC and DMTA (by tan δ), the observed α relaxation (Tα or Tg) of PS, PPO, and the blends, which are intermediate between the constituents, are in good agreement with earlier reports by others. In addition, the β transition (Tβ) of PS at 0.03 Hz and 1 Hz is observed at −30 and 20°C, respectively, while the γ relaxation (Tγ) is not observed at either frequency. The Tβ of PPO is 30°C at 0.03 Hz and is not observed at 1 Hz, while the Tγ is −85°C at 0.03 Hz and −70°C at 1 Hz. On the other hand, blend composition-independent β or γ relaxation observed in the blends may be a consequence of the absence of intra- or intermolecular interaction between the constituents at low temperature. Thus it is suggested that at low temperature, the β relaxation of PS be influenced solely by the local motion of the phenylene ring, and that the β or γ relaxation of PPO be predominated by the local cooperative motions of several monomer units or the rotational motion of the methyl group in PPO. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1981–1986, 1998  相似文献   

    20.
    Thermal degradation and stabilization of poly(2,6-dimethyl-1,4-phenylene oxide) have been examined in air in the range 100–400°. Plots of weight-average molecular weight vs time are linear, confirming random chain scission. The breakdown process has also been studied by DTA and TGA. It was concluded that thermal analysis alone was insufficient to characterize the degradation fully so the degradation products were determined qualitatively using i.r. and NMR spectroscopy. The heats of activation for the systems have been calculated and a stabilization mechanism by bis(1-phenyl-3-α-pyridyl triazeno)Cu(II) chelate has been postulated.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号