首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

2.
Polymer miscibility was found for a blend system comprising of a new poly(aryl ether ketone) and a poly(ether imide). Phase homogeneity was preliminarily confirmed using optical and scanning electron microscopy, indicating that the scales of phase homogeneity in the blends were beyond the resolution limits of either microscopy. A composition-dependent, single glass transition temperature (Tg) in the PAEK/PEI blends within the full range of composition was observed using differential scanning calorimetry (DSC). The thermal transition breadth also suggests that the scales of mixing are fine and uniform.  相似文献   

3.
The thermal degradation of a series of three novel ABA block copolymers of different molar mass (M n), were the block A is a poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), while the block B is a random copoly(aryl ether sulfone) P(ESES-co-EES), was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres, to investigate the effects of M n of the central block on the thermal stability. Copolymers were synthesized with a two step method: in the first stage, a linking molecule is selectively attached as end group to the P(ESES-co-EES) which reacts in the second step with the phenolic hydroxyl group of PPO. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the characteristic parameters of thermal stability, namely initial decomposition temperature (T i) and the activation energy (E a) of degradation, of the various copolymers were determined. Both T i and degradation E a values increased exponentially as a function of M n of copolymers. The results were discussed and interpreted.  相似文献   

4.
Blends of poly(aryl ether ketones) (PAEKs) and an amorphous poly(ether imide) (PEI) were used as model systems to study the broadening of the glass transition due to crystallization and the resulting depletion of PAEK from the amorphous phase. Two different PAEKs were studied, which are completely miscible with PEI in the amorphous state; poly(aryl ether ether ketone) (PEEK) and a slower crystallizing poly(aryl ether ketone ketone)(PEKK). Relatively rapid crystallization conditions were chosen in order to trap a significant fraction of PEI between the PAEK crystal lamellae or between bundles of lamellae. The broad glass transitions are apparently a result of the nonuniform nature of this process. The breadth of the glass transition was quantified by thermally stimulated currents (TSC) applied in the thermal sampling (TS) mode. The results compared favorably with DSC data. The magnitude of the apparent activation energy obtained by the TS method allows one to assign the relaxations as cooperative (glass transition-like) or non-cooperative and to define the limits of the glass transition with a higher degree of precision than other techniques. Cooperative relaxations can be resolved with this technique, even if they are only a small fraction of the overall relaxing species at a given temperature. In some cases the glass transition region was found to broaden to ca. 60°C after crystallization. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The dynamic properties of the micelles of a novel synthesized amphiphilic block copolymer, dendritic poly(benzyl ether)–poly(acrylic acid) (Dendr.PBE-PAA), formed in aqueous solutions were studied by the 1H self-diffusion coefficient, relaxation measurements and 2D nuclear Overhauser enhancement spectroscopy. The experimental results show that Dendr.PBE-PAA molecules self-aggregate in aqueous solution. The dynamic properties of the Dendr.PBE-PAA micelles vary with their total concentration in the solution. The motion of the molecules in the micelles of a concentrated solution is more restricted than that in a less concentrated one. The main chains of PAA are densely packed in the surface layer of the hydrophobic core with the carboxyl side chain pointing to the aqueous medium and the hydrophobic phenoxy rings stay in the interior. The self-aggregate becomes larger as the degree of polymerization of PAA increases. However the phenoxy rings situated in the interior of the hydrophobic core become more loosely packed. n-Hexadecane is solubilized in the micelles. The optimal position of n-hexadecane is between the phenoxy rings next to the PAA chains. Received: 25 January 2001 Accepted: 18 July 2001  相似文献   

6.
Poly(butylene terephthalate) (PBT) and a sample of polyamide have been melt processed in the presence of two new phosphazene compounds, namely 2,2-dichloro-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclotriphosphazene (2Cl-CP) and 2,2-bis(2-methoxy-4-methyleneoxy-phenoxy)-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclophosphazene (CP-2EPOX).The blends were prepared by using polyamide 6 (PA6) and polyamide 6,6 (PA66) in 25/75 and 75/25 w/w compositions by using a co-rotating twin-screw extruder.The materials have been completely characterized from a mechanical, rheological, and morphological point of view. The results indicate that the additives used cause an increase of the rupture properties and of the viscosity, especially in the PA6 rich blends containing CP-2EPOX. This result can be not only attributed to a chain extension effect on the PA phase but also to in situ formation of PA/PBT copolymers promoted by the presence of the CP compound as confirmed by NMR and MALDI-TOF analyses. The compatibilization effect fades in blends containing PA66, probably due to a thermal deactivation of the additives at higher temperature required to process this polymer.  相似文献   

7.
Simultaneous dielectric and near infrared measurements were performed in “real-time” to follow polymerisation reactions on blends of a diglycidyl ether of bisphenol A (DGEBA) epoxy resin with 4,4′-diaminodiphenylmethane (DDM) hardener and a mixture of polysulphone (PSU) and polyetherimide (PEI) as modifier. All the blends had a 10 wt% of PSU/PEI mixture. The effect of the PEI/PSU ratio in the mixture was studied. Monitoring of the α-relaxation (related to vitrification) was performed by dielectric measurements, while epoxy conversion was followed by near infrared spectroscopy. The effect of the PEI/PSU ratio on this behaviour was studied, as well as that of the curing temperature. Obtained results were compared with that of the blends with neat PSU and PEI as modifiers.  相似文献   

8.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
Electrospray ionization tandem mass spectrometry has been used to characterize the microstructure of a nitroxide-mediated poly(ethylene oxide)/polystyrene block copolymer, called SG1-capped PEO-b-PS. The main dissociation route of co-oligomers adducted with lithium or silver cation was observed to proceed via the homolytic cleavage of a C-ON bond, aimed at undergoing reversible homolysis during nitroxide mediated polymerization. This cleavage results in the elimination of the terminal SG1 end-group as a radical, inducing a complete depolymerization process of the PS block from the so-formed radical cation. These successive eliminations of styrene molecules allowed a straightforward determination of the PS block size. An alternative fragmentation pathway of the radical cation was shown to provide structural information on the junction group between the two blocks. Proposed dissociation mechanisms were supported by accurate mass measurements. Structural information on the SG1 end-group could be reached from weak abundance fragment ions detected in the low m/z range of the MS/MS spectrum. Amongst fragments typically expected from PS dissociation, only beta ions were produced. Moreover, specific dissociation of the PEO block was not observed to occur in MS/MS, suggesting that these rearrangement reactions do not compete effectively with dissociations of the odd-electron fragment ions. Information about the PEO block length and the initiated end-group were obtained in MS(3) experiments.  相似文献   

10.
Poly(ethylene oxide) methyl ether/polystyrene/poly(l-lactide) (MPEO/PSt/PLLA) ABC miktoarm star copolymers were synthesized by combination of reversible addition-fragmentation transfer (RAFT) polymerization and ring-opening polymerization (ROP) using bifunctional macro-transfer agent, MPEO with two terminal dithiobenzoate and hydroxyl groups. It was prepared by reaction of MPEO with maleic anhydride (MAh), subsequently reacted with dithiobenzoic acid and ethylene oxide. RAFT polymerization of St at 110 °C yielded block copolymer, MPEO-b-PSt [(MPEO)(PSt)CH2OH], and then it was used to initiate the polymerization of l-lactide in the presence of Sn(OCt)2 at 115 °C to produce ABC miktoarm star polymers, s-[(MPEO)(PSt)(PLLA)]. The structures of products obtained at each synthetic step were confirmed by NMR and gel permeation chromatography data.  相似文献   

11.
The block copolymer poly(ethylene oxide)‐b‐poly(4‐vinylpyridine) was synthesized by a combination of living anionic ring‐opening polymerization and a controllable radical mechanism. The poly(ethylene oxide) prepolymer with the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy end group (PEOT) was first obtained by anionic ring‐opening polymerization of ethylene oxide with sodium 4‐oxy‐2,2,6,6‐tetramethylpiperidinyl‐1‐oxy as the initiator in a homogeneous process. In the polymerization UV and electron spin resonance spectroscopy determined the 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy moiety was left intact. The copolymers were then obtained by radical polymerization of 4‐vinylpyridine in the presence of PEOT. The polymerization showed a controllable radical mechanism. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared, and NMR spectroscopy in detail. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4404–4409, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号