首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequence regulation of monomers is undoubtedly a challenging issue as an ultimate goal in polymer science. To efficiently produce sequence-controlled copolymers, we herein developed the versatile tandem catalysis, which concurrently and/or sequentially involved ruthenium-catalyzed living radical polymerization and in situ transesterification of methacrylates (monomers: RMA) with metal alkoxides (catalysts) and alcohols (ROH). Typically, gradient copolymers were directly obtained from the synchronization of the two reactions: the instantaneous monomer composition in feed gradually changed via the transesterification of R(1)MA into R(2)MA in the presence of R(2)OH during living polymerization to give R(1)MA/R(2)MA gradient copolymers. The gradient sequence of monomers along a chain was catalytically controlled by the reaction conditions such as temperature, concentration and/or species of catalysts, alcohols, and monomers. The sequence regulation of multimonomer units was also successfully achieved in one-pot by monomer-selective transesterification in concurrent tandem catalysis and iterative tandem catalysis, providing random-gradient copolymers and gradient-block counterparts, respectively. In contrast, sequential tandem catalysis via the variable initiation of either polymerization or in situ transesterification led to random or block copolymers. Due to the versatile adaptability of common and commercially available reagents (monomers, alcohols, catalysts), this tandem catalysis is one of the most efficient, convenient, and powerful tools to design tailor-made sequence-regulated copolymers.  相似文献   

2.
We report syntheses of isotactic polyacrylate and polyacrylamide via a stereospecific radical polymerization of a pendant-transformable monomer, acrylamide carrying isopropyl-substituted ureidosulfonamide ( 1 ), followed by post-polymerization modification (PPM). The study in the alcoholysis and aminolysis reactions of the model compound ( 2 ) for evaluation of the transformation ability of the electron-withdrawing pendant group on the repeating unit 1 revealed the following points: the pendant of the polymer became more reactive than that of monomer; the pendant was active enough for aminolysis reaction affording the amide compound quantitatively without additive/catalyst; the addition of a lithium triflate [Li(OTf)] and triethylamine (Et3N) was effective as for promotion of the alcoholysis reaction. Poly(methyl acrylate) (PMA) was quantitatively obtained via the radical polymerization of 1 in the presence of Li(OTf) at 60 °C and the subsequent addition of methanol along with Et3N. Thus-obtained PMA showed higher isotacticity [m=74 %] than that directly obtained via radical polymerization of methyl acrylate (MA) (m=51 %). The isotacticity was further increased as the temperature and monomer concentration were lower, and eventually m was increased up to 93 %. The aminolysis PPM after the iso-specific radical polymerization of 1 gave various isotactic polyacrylamides carrying different alkyl pendant groups, including poly(N-isopropylacrylamide) (PNIPAM).  相似文献   

3.
ABSTRACT

Different secondary alcohols were resolved by lipase catalyzed transesterification using 2,3-butanedione monoxime acrylate as acrylating agent. The results showed that the reaction rates were the fastest among reactions reported until now. The effect of solvent on the transesterification rate was studied. The enantiomeric excess (ee) and enantiomeric purity (E value) of all the acrylate monomers were determined. The synthesized optically active acrylate monomers were polymerized by free radical polymerization technique.  相似文献   

4.
采用马来酸酐、二甲基丙烯酸乙二醇酯、三羟甲基丙烷三基丙烯酸酯对聚丙烯进行改性。以自由基反应机理为基础,讨论了引发剂用量、反应时间、改性试剂的种类、用量等因素对改性PP凝胶含量及性能的影响,提出了力学性能的优选条件。得到了力学性能优良的改性PP,为其进一步功能化提供了理论参考。  相似文献   

5.
N-Methylacrylamide (NMAAm) was polymerized quantitatively by using di-tert-butyl peroxide as photosensitizer to be, for the most part, incorporated in living poly(NMAAm) radical. The living polymer radical reacted effectively with acrylate monomers to yield block copolymer. Longer alkyl chain of the acrylate monomer caused a decrease in the conversion of the second monomer. Methacrylate monomers, such as methyl methacrylate and cyclohexyl methacrylate, showed relatively low reactivities in comparison with acrylates. Styrene exhibited a much lower conversion. The resulting block copolymers showed different thermochromic behaviors in methyl benzoate from that of poly(NMAAm). This is explained on the basis of the difference between refractive indexes of the block copolymers and poly(NMAAm).  相似文献   

6.
Recent advances in transition metal catalyzed olefin polymerization and melt processing stimulate the production of new polymers derived from old monomers. Modern polyolefin processes do not require polymer purification and give excellent control of molecular and supermolecular polyolefin architectures. Progress in catalyst design and preparation of tailor-made homo-and copolymers is highlighted for isotactic, syndiotactic, atactic and stereo-block polypropylene (PP), novel 1-olefin copolymers, and ethylene copolymers with polar monomers, e.g., CO and acrylics. Today polyethylene short-and long-chain-branching is controlled either by uniform ethylene copolymerization with 1-olefins using single-site” metallocene catalysts, or by migratory polyinsertion of ethylene, respectively. Stiff cycloaliphatic polymers expand the frontiers of polyolefins into engineering applications. New families of polyethylenes and EPM with pendent polypropylene chains are obtained via copolymerization of PP macromonomers or polymer-analoguous coupling of functionalized PP during melt processing.  相似文献   

7.
The kinetics of liquid crystalline copolyester synthesis via melt transesterification between poly(butylene terephthalate) (PBT), terephthalic acid (TA) and hydroquinone diacetate (HQDA) is examined. Two different copolyester compositions PBT30/(HQDA+TA) 70 and PBT 50/(HQDA+TA) 50 mol% ratio were synthesized. The ratio of HQDA to TA was kept constant for all the reactions.The copolyesters were synthesized via melt polycondensation route at 265°C, 275°C and 285°C using two different transesterification catalysts, zinc acetate and dibutyl tin oxide. A key postulation assumed in this work is that the reaction originates between TA and HQDA to form a dimer which slices PBT chain. The copolyesterification rate constant for a system containing butylene glycol a more nonpolar moiety compared to ethylene glycol in poly(ethylene terephthalate) has been determined. The activation energy values for the different copolymer systems has also been determined. The rate constants for the uncatalyzed and catalyzed copolyesterification reaction and the activation energy values for the reaction have been determined.  相似文献   

8.
Thallium compounds as catalysts for transesterifications and ester exchange reactions The transesterification of di-, tri- and tetracarboxylic alkyl esters with 2,3-epoxy-propanol was investigated in the presence of various metal compounds as catalysts. It was found that only thallium compounds catalyse the reactions under mild conditions without decomposition of 2,3-epoxypropanol. Many thallium compounds also proved to be very good catalysts for the reactions of 2,3-epoxypropanol with alkoxysilanes and the ester exchange reactions of di-, tri- and tetracarboxylic alkyl esters with 2,3-epoxypropyl-acetate.  相似文献   

9.
Copolymers of n‐butyl acrylate and phosphonium ionic liquid monomers possessing various alkyl substituents and counterions were synthesized through a combination of conventional free radical copolymerization and anion exchange. Differential scanning calorimetry and dynamic mechanical analysis provided the thermal and mechanical properties of these phosphonium cation‐containing random copolymers. Factors including alkyl chain length of phosphonium substituents, counterion type, as well as ionic concentration significantly influenced the association of phosphonium cations. Phosphonium ionomers with trialkyl substituents on phosphonium cations did not display the characteristic small‐angle X‐ray scattering peak, suggesting the absence of ionic clusters. However, low q peaks in wide‐angle X‐ray diffraction was indicative of significant concentration fluctuations wherein the ionic monomeric units associated. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
以甲基丙烯酸2-全氟辛基乙酯( FOEMA)分别和不同烷烃链长丙烯酸酯(RA,CH2=CHCOOCnH2n+1,n=4,8,12,16,18)为单体,用自由基聚合法合成了一系列的含氟丙烯酸酯共聚物,通过X射线衍射(XRD)和示差扫描量热法(DSC)对共聚物进行了表征,发现结晶性与丙烯酸酯的烷烃链长度密切相关,当n=4,...  相似文献   

11.
The physico‐chemical phenomena developing along the screw axis of a twin‐screw extruder during the grafting of maleic anhydride (MA) onto polyolefins [polyethylene (PE), ethylene–propylene rubber (EPM), and polypropylene (PP)] were investigated. For this purpose, sampling devices located along the extruder barrel were used to collect polymer samples that were subsequently characterized to follow the degrees of grafting and crosslinking or degradation. A similar evolution of MA grafting was observed regardless of the polyolefin type or MA and peroxide concentration when grafting was performed under identical conditions, that is, the same peroxide type and set temperature. A correlation between the MA grafting and the calculated peroxide decomposition was established. Chemical reactions occurred along the extruder axis until the peroxide was fully converted. More detailed quantitative measurements of the peroxide decomposition and MA grafting would allow the development of accurate process models. The final MA content depended on the polyolefin composition (PE > EPM ≫ PP). As expected for PE, crosslinking occurred in addition to grafting, but after a certain residence time, the PE network degraded. The PP viscosity reduction after MA grafting was due to the conversion of tertiary PP radicals into primary PP radicals after grafting. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3919–3932, 2000  相似文献   

12.
The alternating copolymer of ethylene with maleic anhydride was esterified with a number of aliphatic alcohols to yield its monoesters, which correspond structurally to equimolar (1:1) head-to-head (h-h) copolymers of acrylic acid with alkyl acrylates. In addition, they were methylated with diazomethane to 1:1 h-h copolymers of methyl acrylate with alkyl acrylates. For comparison the 1:1 head-to-tail (h-t) copolymers of methyl acrylate with alkyl acrylates were prepared by radical copolymerizations. Some chemical, physical, and thermal properties of these 1:1 h-h and h-t copolymers were evaluated and compared. The softening and glass transition temperatures of the 1:1 h-h copolymers were somewhat higher than those of the corresponding 1:1 h-t copolymers, which indicated that the h-h replacements made the polymer chain stiffer and less flexible. The 1:1 h-h copolymers were also observed to degrade thermally at somewhat higher temperatures and with higher rates than the 1:1 h-t copolymers. The ratio of alcohol to monomer found in the pyrolysis products was higher for the 1:1 h-h than for its respective 1:1 h-t copolymer.  相似文献   

13.
Two different oxanorbornene monomers were prepared and copolymerized with butyl-functionalized oxanorbornene monomer through the ring-opening metathesis polymerization. The resulting polymers were then subjected to the aminolysis reactions with propylamine (PA) in the presence of methyl acrylate (MA) to capture, in situ, the latent thiol. It was found that the polymer, in which the thiolactone unit is close to the polymer backbone, did not undergo an efficient aminolysis reaction even an excess amount of PA was utilized, while the other polymer, in which the thiolactone unit away from the polymer backbone, did efficiently undergo aminolysis reaction even PA was used in low amounts. Besides, a variety of primary amine compounds along with MA were reacted with the polymer, in which the thiolactone group away from the polymer backbone, to test their reactivity toward the aminolysis reactions. All modified polymers were characterized by using conventional instruments such as gel permeation chromatography, nuclear magnetic resonance, and differential scanning calorimetry. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2145–2153  相似文献   

14.
The copolymerizations of methyl acrylate (MA) with different N- arylmethacrylamide (N-ArMA) were carried out in benzene solution by free radical initiation. The compositions of the copolymers were deter mined by ~1H NMR method. The monomer reactivity ratios were calculated by the Fineman-Ross (F-R) method. The reactivity ratios and the activity of various N-ArMA with MA were investigated.  相似文献   

15.
《先进技术聚合物》2018,29(1):551-559
Long‐chain–branched polypropylene (LCBPP) is one of polypropylenes (PPs) with high melt strength and good melt elasticity. Recently, due to its outstanding properties, LCBPP have been attracted increasingly attention in the field of development and characterization by the researchers all over the world. In this study, LCBPP was prepared by the melt radical branching reaction in a torque rheometer. The influences of various acrylate monomers with different functionality degrees on the structure and melt performance of PP products were investigated. The results indicated that grafting monomers with different functionality degrees made diverse influences on the branching density and branching chain length of branching PP products. With the increase of the functionality degree of grafting monomers, the branching level of PP products increased gradually and the “multiplicity” of branches became increasingly obvious. Besides, a higher reactivity of pentaerythritol triacrylate with hydroxyl than the similar molecular structured pentaerythritol tetraacrylate was confirmed. Furthermore, due to the high reactivity of dipentaerythritol penta(hexa)acrylate, branching and crosslinking reaction occurred simultaneously during the reaction process. As a result, the gel content increased and finally formed highly star branching structures with a shape of “dense and short.”  相似文献   

16.
ABSTRACT

The use of poly(3,4-epoxy-1-butene) (polyEPB) in photoinduced free radical polymerizations has been investigated. It was observed that the inclusion of polyEPB into these photopolymerizations has several beneficial effects. In combination with aromatic ketones, polyEPB functions as a hydrogen donor to form a highly effective photoinitiator for the polymerization of acrylate monomers. At the same time, polyEPB undergoes facile autoxidation that serves to mitigate inhibition effects due to oxygen during free radical photopolymerizations. PolyEPB is an effective chain transfer agent that tends to increase both the rate and conversion in photoinduced crosslinking polymerizations in which multifunctional monomers are employed. Lastly, polyEPB is a interesting matrix-modifying agent that becomes incorporated into the resin matrix during photopolymerization due to photoinduced grafting reactions.  相似文献   

17.
Cellulose-based biodegradable polymers—as microspheres or hydrogels—are suitable for drug delivery systems. In this work, cellulose microfibers were converted to cellulose esters for subsequent graft copolymerization either by free radical or atom transfer radical polymerization (ATRP). For the former, carboxymethyl cellulose (CMC) was prepared and then modified through grafting of poly(hydroxyethyl acrylate) or polyacrylamide. ATRP was achieved by chloroacetylation of cellulose followed by graft copolymerization of hydroxyethyl acrylate or acrylamide monomers. The degree of substitution for CMC and chloroacetylated cellulose (CAC) was determined by the method described in US Pharmacopeia NF24 and by titration method, respectively. CMC, CAC, and the grafted copolymers were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, and atomic force microscopy; the latter technique clearly shows the chain growth of the synthetic polymers on the backbone surface. Furthermore, cephalexin antibiotic was loaded on the copolymers, and the resultant in vitro drug release studied in three different media (buffer solutions with pH equal to 3, 6.1, and 8).  相似文献   

18.
A series of stable dialkyl complexes of Pd, (alpha-diimine)PdR2 (alpha-diimine = aryl-substituted diimine, R = n-Pr, n-Bu, i-Bu), have been prepared via Grignard alkylation of the corresponding (alpha-diimine)PdCl2 complexes. Protonation of these dialkyl species at low temperature results in loss of alkane and formation of cationic Pd beta-agostic alkyl complexes, which have been observed as intermediates in the polymerization of ethylene and propylene by these Pd catalysts. Studies of the structure and dynamic behavior of these alkyl complexes are presented, along with the results of trapping reactions of these species with ligands such as NCMe, CO, and C2H4. Trapping with ethylene results in formation of cationic alkyl ethylene complexes which model the catalyst resting state in these systems. These complexes have been used to obtain mechanistic details and kinetic parameters of several processes, including isomerization of the alkyl ethylene complexes, associative and dissociative exchange with free ethylene, and migratory insertion rates of both primary and secondary alkyl ethylene species. These studies indicate that the overall branching observed in polyethylenes produced by these Pd catalysts is governed both by the kinetics of migratory insertion and by the equilibria involving the alkyl ethylene complexes.  相似文献   

19.
Living radical polymerization (LRP) of methyl acrylate (MA), acrylic acid (AA), and vinyl acetate (VAc) mediated by cobalt(II) porphyrin complexes ((TMP)CoII·, (TMPS)CoII·) are reported. The polymeric products with relatively low polydispersity and controlled number average molecular weight (Mn) based on one polymer chain per cobalt complex demonstrate the living characters of the polymerization process. The formation of block copolymers of poly(methyl acrylate)‐b‐poly(vinyl acetate) (PMA‐b‐PVAc) and poly(methyl acrylate)‐b‐poly(vinyl pyrrolidone) (PMA‐b‐PVP) demonstrate another important feature of LRP and extend the application of cobalt porphyrin mediated radical polymerization to a wider array of functionalized monomers. Kinetic studies using 1H NMR to follow the formation of orGano‐cobalt complexes reveal that two mechanisms, reversible termination (RT) and degenerative transfer (DT), occur during the polymerization process. MA and VAc polymerization mediated by cobalt porphyrin complexes are used to illustrate the properties of these two LRP pathways and evaluate the kinetic and thermodynamic properties for several of the central reactions.  相似文献   

20.
Materials bearing ionic monomers were obtained through free radical terpolymerization of methyl methacrylate (MMA), poly(ethylene glycol) methyl ether methacrylate (PMEM) or poly(ethylene glycol) ethyl ether methacrylate (PEEM) with methacrylic acid (MA) and sodium styrene sulfonate (NaSS). The reactions were carried out in dimethyl sulfoxide using azobis(isobutyronitrile) as initiator. The reactivity ratios of the different couple of monomers were calculated according to the general copolymerization equation using the Finnemann-Ross, Kelen-Tüdos and Tidwell-Mortimer methods. The values of the reactivity ratios indicate that the different monomer units can be considered as randomly distributed along the chains for terpolymerizations of MMA, PMEM or PEEM with MA and NaSS. The average composition of the comonomers in the different terpolymers were calculated, showing a good agreement between the experimental and theoretical compositions. The instantaneous compositions are constant until about 70% of conversion. For higher conversions, the insertion of ionic monomers increases or decreases according to the system studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号