首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By molecular dynamics simulation of a coarse-grained bead-spring-type model for a cylindrical molecular brush with a backbone chain of N(b) effective monomers to which with grafting density σ side chains with N effective monomers are tethered, several characteristic length scales are studied for variable solvent quality. Side chain lengths are in the range 5 ≤ N ≤ 40, backbone chain lengths are in the range 50 ≤ N(b) ≤ 200, and we perform a comparison to results for the bond fluctuation model on the simple cubic lattice (for which much longer chains are accessible, N(b) ≤ 1027, and which corresponds to an athermal, very good, solvent). We obtain linear dimensions of the side chains and the backbone chain and discuss their N-dependence in terms of power laws and the associated effective exponents. We show that even at the theta point the side chains are considerably stretched, their linear dimension depending on the solvent quality only weakly. Effective persistence lengths are extracted both from the orientational correlations and from the backbone end-to-end distance; it is shown that different measures of the persistence length (which would all agree for Gaussian chains) are not mutually consistent with each other and depend distinctly both on N(b) and the solvent quality. A brief discussion of pertinent experiments is given.  相似文献   

2.
A series of triblock nonionic surfactants with different Propylene oxide and ethylene oxide chain lengths were synthesized. The triblock nonionic surfactants and poly(ethylene glycols) with different molecular weight were used, to find the effects of polymer chain length and size of the micelles on the cloud point of the surfactants. Two possible models are considered on the basis of cloud point changes of the solutions, to describe the polymer- surfactant interactions. One model suggests that flocculation depletion for the polymer chains exist between two regular micelles. This provides the driving force for the neighboring micelles to approach each other and destabilize the colloidal system. The flocculation effect is more important for polymers with a shorter chain block the approach of the micelles, since there is no typical polymer-surfactant association formed but just simple small molecule associations in which the steric and solvation effects of the polymer chains make the inter-micelles interactions repulsive. The other model considers that intra-chain micelles of polysoap are formed among the surfactant monomers and long polymer chains. The bridging attraction between two intra-chain micelles in such structures can enhance the collisions among the micelles, due to the exchange of amphiphilic monomers among the neighboring micelles.  相似文献   

3.
A coarse-grained model has been developed for asymmetrically substituted poly(silylenemethylene)s in which the side chain is a flexible spacer terminated by a biphenyl unit. Each monomer unit is represented by four coarse-grained beads that interact via a Lennard–Jones potential and are subject to the first- and second-order interactions deduced from the atomistically detailed model. Metropolis Monte Carlo simulations were performed for isolated syndiotactic, isotactic, and atactic chains. Snapshots from the equilibrated coarse-grained chain on the discrete space of a high coordination lattice were reverse-mapped to atomistically detailed structures in continuous space. At 373 K, the chains were disordered independent of the stereochemical composition. The occupancy of bond pairs depended on the stereochemical composition, with the trans-gauche (tg) sequence being favored by the isotactic chain. When the simulation was performed with the backbone constrained to specific periodic structures, the g helix was the lowest energy structure for either the atactic or isotactic chains. For the syndiotactic chain, the g and gt helices were favored. The appearance of the g helix as the favored periodic structure of the isolated chain was consistent with the chain conformation reported previously for the smectic phase of this polymer in the bulk state. The g helix was disrupted when the backbone was allowed to access nonhelical conformations, even though these conformations may have been slightly higher in energy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 886–896, 2005  相似文献   

4.
Adsorbed or grafted polymers are often used to provide steric stabilization of colloidal particles. When the particle size approaches the nanoscale, the curvature of the particles becomes relevant. To investigate this effect for the case of cylindrical symmetry, I use a classical fluids density functional theory applied to a coarse-grained model to study the polymer-mediated interactions between two nanorods. The rods are coated with end-adsorbing chains and immersed in a polymer melt of chemically identical, nonadsorbing chains. The force between the nanorods is found to be nonmonotonic, with an attractive well when the two brushes come into contact with each other, followed by a steep repulsion at shorter distances. The attraction is due to the entropic phenomenon of autophobic dewetting, in which there is a surface tension between the brush and the matrix chains. These results are similar to previous results for planar and spherical polymer brushes in melts of the same polymer. The depth of the attractive well increases with matrix chain molecular weight and with the surface coverage. The attraction is very weak when the matrix chain molecular weight is similar to or smaller than the brush molecular weight, but for longer matrix chains the magnitude of the attraction can become large enough to cause aggregation of the nanorods.  相似文献   

5.
6.
7.
8.
 A series of Triton X surfactants with different ethylene oxide chain length and poly(ethylene glycols) with different molecular weight were used, to find the effects of polymer chain length and size of the micelles on the cloud point of the surfactants. Two possible models are considered on the basis of cloud point changes of the solutions, to describe the polymer–surfactant interactions. One model considers that intra-chain micelles of polysoap are formed among the surfactant monomers and long polymer chains. The bridging attraction between two intra-chain micelles in such structures can enhance the collisions among the micelles, due to the exchange of amphiphilic monomers among the neighboring micelles. The other model suggests that flocculation depletion for the polymer chains exists between two regular micelles. This provides the driving force for the neighboring micelles to approach each other and destabilize the colloidal system. The flocculation effect is more significant for polymer with a long chain. Polymers with a shorter chain block the approach of the micelles, since there is no typical polymer–surfactant association formed but just simple small molecule associations in which the steric and solvation effects of the polymer chains make the inter-micelle interactions repulsive. Received: 19 August 1997 Accepted: 11 December 1997  相似文献   

9.
The importance of hydrophobic interactions in determining polymer adsorption and wrapping of carbon nanotubes is still under debate. In this work, we concentrate on the effect of short-ranged weakly attractive hydrophobic interactions between polymers and nanotubes (modeled as an infinitely long and smooth cylindrical surface), neglecting all other interactions apart for chain flexibility. Using coarse-grained Monte Carlo simulation of such simplified systems, we find that uniform adsorption and wrapping of the nanotube occur for all degrees of chain flexibility for tubes with sufficiently large outer radii. However, the adsorbed conformations depend on chain stiffness, ranging from randomly adsorbed conformations of the flexible chain to perfect helical or multihelical conformations (in the case of more concentrated solutions) of the rigid chains. Adsorption appears to occur in a sequential manner, wrapping the nanotube nearly one monomer at a time from the point of contact. Once adsorbed, the chains travel on the surface of the cylinder, retaining their helical conformations for the semiflexible and rigid chains. Our findings may provide additional insight to experimentally observed ordered polymer wrapping of carbon nanotubes.  相似文献   

10.
We studied the static and dynamic properties of unentangled polymer chains which have a variable strength of interaction with the confining smooth walls by means of the lattice Monte Carlo simulation based on the bond-fluctuation model, that is, investigated the wall-polymer interactions which systematically vary from attraction to repulsion. A critical value of attractive potential(εwc) is found to be -0.6kBT, and only below it can the adsorption layer of monomers be formed near the wall. At the critical point of attraction εwc, attractive interaction counterba- lances the wall-polymer excluded volume effect, which minimizes the confinement effects on both chain dimension and mobility. Influences on both chain dimension and mobility increase with the increasing of either attraction or repulsion imposed by the walls. Despite of the nature and strength of the wall-polymer interaction, with the decrease of film thickness, configurations more parallelly aligned and flattened are adopted by confined chains, and a systematic trend of deceleration is found. Variations of chain dynamics with both film thickness and wall-polymer interaction can be well explained by the corresponding changes in the confinement of the nearest-neighboring particles that surround the chains. Besides, the thickness of the interfacial layer inside polymer films, where chains adopt a flattened “pancake” shape, is about two times the bulk radius of gyration and independent of the wall-polymer interaction.  相似文献   

11.
Simulations of simple models of polymer chains were carried out by the means of the dynamic Monte Carlo method. The model chains were confined to a simple cubic lattice. Three different chain architectures were studied: linear, star‐branched and ring chains. The polymer model chain interacted with an impenetrable surface with a simple contact attractive potential. It was found that size parameters of all these polymers obey scaling laws. The temperatures of the transitions from weakly to strongly adsorbed chain were determined. It was shown for weakly adsorbed chains that ring polymers are always ca. 50% more adsorbed than linear and star‐branched ones. The properties of adsorbed linear and star‐branched polymers are very similar in the length of chain and the strength of adsorption studied. Strongly adsorbed ring polymers are still more adsorbed but differences between all kinds of chains become less pronounced.  相似文献   

12.
The structure and thermodynamic properties of a system of end-grafted flexible polymer chains grafted to a flat substrate and exposed to a solvent of variable quality are studied by molecular dynamics methods. The macromolecules are described by a coarse-grained bead-spring model, and the solvent molecules by pointlike particles, assuming Lennard-Jones-type interactions between pairs of monomers (epsilon(pp)), solvent molecules (epsilon(ss)), and solvent monomer (epsilon(ps)), respectively. Varying the grafting density sigma(g) and some of these energy parameters, we obtain density profiles of solvent particles and monomers, study structural properties of the chain (gyration radius components, bond orientational parameters, etc.), and examine also the profile of the lateral pressure P( parallel)(z), keeping in the simulation the normal pressure P( perpendicular) constant. From these data, the reduction of the surface tension between solvent and wall as a function of the grafting density of the brush has been obtained. Further results include the stretching force on the monomer adjacent to the grafting site and its variation with solvent quality and grafting density, and dynamic characteristics such as mobility profiles and chain relaxation times. Possible phase transitions (vertical phase separation of the solvent versus lateral segregation of the polymers into "clusters," etc.) are discussed, and a comparison to previous work using implicit solvent models is made. The variation of the brush height and the interfacial width of the transition zone between the pure solvent and the brush agrees qualitatively very well with corresponding experiments.  相似文献   

13.
Using Brownian dynamics simulations, we study the effect of the charge ratio, the surfactant length, and the grafting density on the conformational behavior of the complex formed by the polyelectrolyte brush with oppositely charged surfactants. In our simulations, the polyelectrolyte chains and surfactants are represented by a coarse-grained bead-spring model, and the solvent is treated implicitly. It is found that varying the charge ratio induces different morphologies of surfactant aggregates adsorbed onto the brush. At high charge ratios, the density profiles of surfactant monomers indicate that surfactant aggregates exhibit a layer-by-layer arrangement. The surfactant length has a strong effect on the adsorption behavior of surfactants. The lengthening of surfactant leads to a collapsed brush configuration, but a reswelling of the brush with further increasing the surfactant length is observed. The collapse of the brush is attributed to the enhancement of surfactants binding to polyelectrolyte chains. The reswelling is due to an increase in the volume of adsorbed surfactant aggregates. At the largest grafting density investigated, enhanced excluded volume interactions limit the adsorption of surfactant within the polyelectrolyte brush. We also find that end monomers in polyelectrolyte chains exhibit a bimodal distribution in cases of large surfactant lengths and high charge ratios.  相似文献   

14.
A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond fluctuation model with Wang-Landau and umbrella sampling algorithms in a two-dimensional state space. The simulations' density-of-states results have been evaluated for interaction parameters spanning the range from good- to poor-solvent conditions and from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and present results for the overall phase behavior and for some of the transitions. For adsorption in good solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement between the results. For the collapse transition, which occurs when the solvent quality changes from good to poor, we consider two situations corresponding to three-dimensional (hard surface) and two-dimensional (very attractive surface) chain conformations, respectively. For the hard surface, we compare tethered chains with free chains and find very similar behavior for both types of chains. For the very attractive surface, we find the two-dimensional chain collapse to be a two-step transition with the same sequence of transitions that is observed for three-dimensional chains: a coil-globule transition that changes the overall chain size is followed by a local rearrangement of chain segments.  相似文献   

15.
Molecular dynamics simulations are used to investigate the conformations of a single polymer chain, represented by the Kremer-Grest bead-spring model, in a solution with a Lennard-Jones liquid as the solvent when the interaction strength between the polymer and solvent is varied. Results show that when the polymer-solvent interaction is unfavorable, the chain collapses as one would expect in a poor solvent. For more attractive polymer-solvent interactions, the solvent quality improves and the chain is increasingly solvated and exhibits ideal and then swollen conformations. However, as the polymer-solvent interaction strength is increased further to be more than about twice the strength of the polymer-polymer and solvent-solvent interactions, the chain exhibits an unexpected collapsing behavior. Correspondingly, for strong polymer-solvent attractions, phase separation is observed in the solutions of multiple chains. These results indicate that the solvent becomes effectively poor again at very attractive polymer-solvent interactions. Nonetheless, the mechanism of chain collapsing and phase separation in this limit differs from the case with a poor solvent rendered by unfavorable polymer-solvent interactions. In the latter, the solvent is excluded from the domain of the collapsed chains while in the former, the solvent is still present in the pervaded volume of a collapsed chain or in the polymer-rich domain that phase separates from the pure solvent. In the limit of strong polymer-solvent attractions, the solvent behaves as a glue to stick monomers together, causing a single chain to collapse and multiple chains to aggregate and phase separate.  相似文献   

16.
A coarse-grained model of star-branched polymer chains confined in a slit was studied. The slit was formed by two parallel impenetrable surfaces, which were attractive for polymer beads. The polymer chains were flexible homopolymers built of identical united atoms whose positions in space were restricted to the vertices of a simple cubic lattice. The chains were regular star polymers consisted of f = 3 branches of equal length. The chains were modeled in good solvent conditions and, thus, there were no long-range specific interactions between the polymer beads-only the excluded volume was present. Monte Carlo simulations were carried out using the algorithm based on a chain's local changes of conformation. The influence of the chain length, the distances between the confining surfaces, and the strength of the adsorption on the properties of the star-branched polymers was studied. It was shown that the universal behavior found previously for the dimension of chains was not valid for some dynamic properties. The strongly adsorbed chains can change their position so that they swap between both surfaces with frequency depending on the size of the slit and on the temperature only.  相似文献   

17.
The adhesion between a glassy polymer melt and substrate is studied in the presence of end‐grafted chains chemically attached to the substrate surface. Extensive molecular dynamics simulations have been carried out to study the effect of the areal density ∑ of tethered chains and tensile pull velocity v on the adhesive failure mechanisms. The initial configurations are generated using a double‐bridging algorithm in which new bonds are formed across a pair of monomers equidistant from their respective free ends. This generates new chain configurations that are substantially different than the original two chains such that the systems can be equilibrated in a reasonable amount of cpu time. At the slowest tensile pull velocity studied, a crossover from chain scission to crazing is observed as the coverage increases, while for very large pull velocity, only chain scission is observed. As the coverage increases, the sections of the tethered chains pulled out from the interface form the fibrils of a craze that are strong enough to suppress chain scission, resulting in cohesive rather than adhesive failure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 199–208, 2004  相似文献   

18.
The authors have successfully developed a structurally coarse-grained 1,4-cis-polyisoprene-atactic polystyrene blend model by systematic mapping between a detailed atomistic model and a mesoscale model. This is to their best knowledge the first time that a chemically specific polymer blend model has been used to study the phase separation morphology and kinetics in a blend. A structurally optimized force-field model has many advantages over simple bead-spring models in terms of representing the chain microstructure. It keeps the identity of the polymers, particularly the structure through radial distribution functions. Starting from randomly mixed initial configurations, the blends show a clear phase separation for chain lengths around 10 monomers and this separation becomes more pronounced with the increase of chain length. The ensuing morphology is lamellar at equiweight concentrations and cylindrical or spherical at unbalanced concentrations. Morphologies are validated to be stable under increasing system sizes and further characterized quantitatively by density profiles.  相似文献   

19.
Simple models of polymer chains were based on a simple cubic lattice. The model chains were star‐branched with f = 3 and f = 6 branches. The attractive potential between polymer segments was introduced to study the properties of polymer chains in the different temperature regimes. The computer simulations were carried out by means of the dynamic Monte Carlo method. It was found that contrary to recent real experiments, the ratio of the radius of gyration to the hydrodynamic radius did not exhibit a maximum near the coil‐globule transition but decreased monotonically with the temperature. The distribution of polymer‐polymer contacts and their lifetimes were also studied. It appeared that in homopolymer chains the lifetimes of these contacts were very short. At low temperatures contacts were distributed over the entire chain and at high temperatures only contacts that were close to the chain survived longer times.  相似文献   

20.
We present Monte Carlo simulations of nonionic surfactant adsorption at the liquid/vapor interface of a monatomic solvent. All molecules in the system, solvent and surfactant, are characterized by the Lennard-Jones (LJ) potential using differing interaction parameters. Surfactant molecules consist of an amphiphilic chain with a solvophilic head and a solvophobic tail. Adjacent atoms along the surfactant chain are connected by finitely extensible harmonic springs. Solvent molecules move via the Metropolis random-walk algorithm, whereas surfactant molecules move according to the continuum configurational bias Monte Carlo (CBMC) method. We generate quantitative thermodynamic adsorption and surface tension isotherms in addition to surfactant radius of gyration, tilt angles, and potentials of mean force. Surface tension simulations compared to those calculated from the simulated adsorbed amounts and the Gibbs adsorption isotherm agree confirming equilibrium in our simulations. We find that the classical Langmuir isotherm is obeyed for our LJ surfactants over the range of head and tail lengths studied. Although simulated surfactant chains in the bulk solution exhibit random orientations, surfactant chains at the interface orient roughly perpendicular and the tails elongate compared to bulk chains even in the submonolayer adsorption regime. At a critical surfactant concentration, designated as the critical aggregation concentration (CAC), we find aggregates in the solution away from the interface. At higher concentrations, simulated surface tensions remain practically constant. Using the simulated potential of mean force in the submonolayer regime and an estimate of the surfactant footprint at the CAC, we predict a priori the Langmuir adsorption constant, KL, and the maximum monolayer adsorption, Gammam. Adsorption is driven not by proclivity of the surfactant for the interface, but by the dislike of the surfactant tails for the solvent, that is by a "solvophobic" effect. Accordingly, we establish that a coarse-grained LJ surfactant system mimics well the expected equilibrium behavior of aqueous nonionic surfactants adsorbing at the air/water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号