首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of manganese(II) with nucleosides — adenosine (A), guanosine (G), cytidine (C), and uridine (U) — in an alkaline D2O solution has been investigated by the13C NMR method. It has been established that the structure of the paramagnetic Mn(II)—nucleoside complexes differs substantially in neutral and in alkaline media. The broadening of the resonance lines (C-2′, C-3′ > C-1′, C-4′ > C-5′) shows the localization of the Mn(II) in the C-2′ and C-3′ hydroxyls of the ribose in an alkaline medium. It has been shown for the case of U that the degree of complex-formation depends on the pH of the solution. It is assumed that the nucleoside forms intramolecular complexes (I) with Mn(OH)2.  相似文献   

2.
The 1′,2′-unsaturated 2′,3′-secoadenosine and 2′,3′-secouridine analogues were synthesized by the regioselective elimination of the corresponding 2′,3′-ditosylates, 2 and 18 , respectively, under basic conditions. The observed regioselectivity may be explained by the higher acidity and, hence, preferential elimination of the anomeric H–C(1′) in comparison to H? C(4′). The retained (tol-4-yl)sulfonyloxy group at C(3′) of 3 allowed the preparation of the 3′-azido, 3′-chloro, and 3′-hydroxy derivatives 5–7 by nucleophilic substitution. ZnBr2 in dry CH2Cl2 was found to be successful in the removal (85%) of the trityl group without any cleavage of the acid-sensitive, ketene-derived N,O-ketal function. In the uridine series, base-promoted regioselective elimination (→ 19 ), nucleophilic displacement of the tosyl group by azide (→ 20 ), and debenzylation of the protected N(3)-imide function gave 1′,2′-unsaturated 5′-O-trityl-3′-azido-secouridine derivative 21 . The same compound was also obtained by the elimination performed on 2,2′-anhydro-3′-azido-3′-azido-3′-deoxy-5′-O-2′,3′-secouridine ( 22 ) that reacted with KO(t-Bu) under opening of the oxazole ring and double-bond formation at C(1′).  相似文献   

3.
A universal key component is proposed for the preparation of oligonucleotides with 3′- and 5′-terminal phosphate groups — 2′,3′-dibenzoyluridin-5′-yl (4-chlorophenylphosphate) (pU(Bz)2), which is a potential source of the phosphate group. The condensation ofpU(Bz)2 with the 5′-OH or the 3′-OH group of a protected oligonucleotide leads to the formation of oligodeoxyribonucleotides with 5′- or 3′-terminal uridine, respectively. The oxidation of the 2′,3′-cis-glycol group of the terminal uridine unit followed by β-elimination forms oligodeoxyribonucleotides with terminal phosphate groups.  相似文献   

4.
Five previously undescribed trimetrexate analogues with bulky 2′-bromo substitution on the phenyl ring were synthesized in order to assess the effect of this structure modification on dihydrofolate reductase inhibition. Condensation of 2-[2-(2-bromo-3,4,5-trimethoxyphenyl)ethyl]-1,l-dicyanopropene with sulfur in the presence of N,N-diethylamine afforded 2-amino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methyl-thiophene-3-carbonitrile ( 15 ) and 2-amino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethyl]thiophene-3-car-bonitrile ( 16 ). Further reaction with chloroformamidine hydrochloride converted 15 and 16 into 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxybenzyl)-4-methylthieno[2,3-d]pyrimidine ( 8a ) and 2,4-diamino-4-[2-(2′-bromo-3′,4′,5′-trimethoxyphenyl)ethylthieno[2,3-d]pyrimidine ( 12 ) respectively. Other analogues, obtained by reductive coupling of the appropriate 2,4-diaminoquinazoline-6(or 5)-carbonitriles with 2-bromo-3,4,5-trimethoxyaniline, were 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)-5-chloro-quinazoline ( 9a ), 2,4-diamino-5-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 10 ), and 2,4-diamino-6-(2′-bromo-3′,4′,5′-trimethoxyanilinomethyl)quinazoline ( 11 ). Enzyme inhibition assays revealed that space-filling 2′-bromo substitution in this limited series of dicyclic 2,4-diaminopyrimidines with a 3′,4′,5′-trimethoxyphenyl side chain and a CH2, CH2CH2, or CH2NH bridge failed to improve species selectivity against either P. carinii or T. gondii dihydrofolate reductase relative to rat liver dihydrofolate reductase.  相似文献   

5.
The synthesis of hitherto unknown 1‐benzoyl‐1′,3′,3′‐trimethyl‐4,6‐diphenylspiro[1,2‐dihydropyridine‐2,2′‐indolines] 5 from 2,4,6‐triphenyl‐1,3‐oxazinium tetrafluoroborate ( 1b ) and 1,3,3‐trimethyl‐2‐methyleneindolines 2 (used as such or generated in situ from the corresponding 3H‐indolium salts 4 ) in the presence of triethylamine in anhydrous acetonitrile by a 3,6‐[C3N+C2] 1,3‐oxazinium ring transformation is reported. Structure elucidation is performed by an X‐ray structure determination of the spiro[dihydropyridine‐indoline] 5a . Spectroscopic data of the transformation products and their mode of formation are discussed.  相似文献   

6.
Intramolecular cyclisation of properly protected and activated derivatives of 2′,3′-secouridine ( = 1-{2-hydroxy-1-[2-hydroxy-1-(hydroxymethyl)ethoxy]-ethyl}uracil; 1 ) provided access to the 2,2′-, 2,3′-, 2,5′-, 2′,5′-, 3′,5′-, and 2′,3′-anhydro-2′,3′-secouridines 5, 16, 17, 26, 28 , and 31 , respectively (Schemes 1–3). Reaction of 2′,5′-anhydro-3′-O-(methylsulfonyl)- ( 25 ) and 2′,3′-anhydro-5′-O-(methylsulfonyl)-2′,3′-secouridine ( 32 ) with CH2CI2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene generated the N(3)-methylene-bridged bis-uridine structure 37 and 36 , respectively (Scheme 3). Novel chiral 18-crown-6 ethers 40 and 44 , containing a hydroxymethyl and a uracil-1-yl or adenin-9-yl as the pendant groups in a 1,3-cis relationship, were synthesized from 5′-O-(triphenylmethyl)-2′,3′-secouridine ( 2 ) and 5′-O,N6-bis(triphenylmethyl)-2′,3′-secoadenosine ( 41 ) on reaction with 3,6,9-trioxaundecane-1,11-diyl bis(4-toluenesulfonate) and detritylation of the thus obtained (triphenylmethoxy) methylcompound 39 and 43 , respectively (Scheme 4).  相似文献   

7.
The regiospecific reaction of 5-vinyl-3′,5′-di-O-acetyl-2′-deoxyuridine ( 2 ) with HOX (X = Cl, Br, I) yielded the corresponding 5-(1-hydroxy-2-haloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines 3a-c . Alternatively, reaction of 2 with iodine monochloride in aqueous acetonitrile also afforded 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with DAST (Et2NSF3) in methylene chloride at -40° gave the respective 5-(1-fluoro-2-chloroethyl)- ( 6a , 74%) and 5-(1-fluoro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6b , 65%). In contrast, 5-(1-fluoro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6e ) could not be isolated due to its facile reaction with methanol, ethanol or water to yield the corresponding 5-(1-methoxy-2-iodoethyl)- ( 6c ), 5-(1-ethoxy-2-iodoethyl)- ( 6d ) and 5-(1-hydroxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3c ). Treatment of 5-(1-hydroxy-2-chloroethyl)- ( 3a ) and 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with thionyl chloride yielded the respective 5-(1,2-dichloroethyl)- ( 6f , 85%) and 5-(1-chloro-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6g , 50%), whereas a similar reaction employing the 5-(1-hydroxy-2-iodoethyl)- compound 3c afforded 5-(1-methoxy-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6c ), possibly via the unstable 5-(1-chloro-2-iodoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine intermediate 6h . The 5-(1-bromo-2-chloroethyl)- ( 6i ) and 5-(1,2-dibromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6j ) could not be isolated due to their facile conversion to the corresponding 5-(1-ethoxy-2-chloroethyl)- ( 6k ) and 5-(1-ethoxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 61 ). Reaction of 5-(1-hydroxy-2-bromoethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 3b ) with methanolic ammonia, to remove the 3′,5′-di-O-acetyl groups, gave 2,3-dihydro-3-hydroxy-5-(2′-deoxy-β-D-ribofuranosyl)-furano[2,3-d]pyrimidine-6(5H)-one ( 8 ). In contrast, a similar reaction of 5-(1-fluoro-2-chloroethyl)-3′,5′-di-O-acetyl-2′-deoxyuridine ( 6a ) yielded (E)-5-(2-chlorovinyl)-2′-deoxyuridine ( 1b , 23%) and 5-(2′-deoxy-β-D-ribofuranosyl)furano[2,3-d]pyrimidin-6(5H)-one ( 9 , 13%). The mechanisms of the substitution and elimination reactions observed for these 5-(1,2-dihaloethyl)-3′,5′-di-O-acetyl-2′-deoxyuridines are described.  相似文献   

8.
TiO2 nanoparticles supported on carbon nanotubes (TiO2-CNTs) as an efficient heterogeneous catalyst was used for the synthesis of spiro[3,4′]1,3-dihydro-2H-indol-2-one-2′-amino-5′-oxo-4'H,5'H-pyrano[3′,2′-c]chromen-3′-yl cyanides and spiro[3,8′]1,3-dihydro-2H-indol-2-one-6′-amino-8'H-[1′,3′]dioxolo[4′,5′-g]chromen-7′-yl cyanides via the cyclocondensation reaction of isatins with malononitrile and 4-hydroxycoumarin or 3,4-methylenedioxyphenol in aqueous media at room temperature. This reaction offers several sustainable and economic benefits such as high yields of products, convenient operation, and use of non-toxic catalyst in water media.  相似文献   

9.
We herein report Mannich aminomethylation of variously structural flavonoids and their biological evaluation against human breast cancer cell. Mannich reaction showed that substitution at C-6 position depends on amine basicity and C-ring feature of flavonoids. All five flavonoid substrates reacted with strong amine bases to afford the bis(6,8-aminomethyl) derivatives, while with weak amines, the different products were obtained dependently on structural characteristic of flavonoid. 3-OH and 3-O-substituted groups on the C-ring exhibited the deactivated aminomethylation at C-6 position, whereas substitution at this position was independent on bond feature at C-2 and C-3 on the C-ring. Screening anti-proliferative activity showed six flavonoids possessed activity against breast cancer cell, MDA-MB-231. Among them, the flavonoids, luteolin (2) and 3′,4′,5,7-tetrahydroxy-6,8-bis(pyrrolidin-1-ylmethyl)-3-rutinosylflavone (3a), displayed the highest anti-proliferative activity with the lowest IC50 values.  相似文献   

10.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

11.
New hexamethylated ferrocene derivatives containing thioether moieties (1,1′-bis[(tert-butyl)thio]-2,2′,3,3′,4,4′-hexamethylferrocene ( 3a , b )) or fused S-heteropolycyclic substituents (rac-1-[(1,3-benzodithiol- 2-yliden)methyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 5 ) and rac-1-[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]-2,2′,3,3′,4,4′-hexamethylferrocene ( 14 )), as well as a series of ferrocene-substituted vinylogous tetrathiafulvalenes (1,1′-bis[1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 6a ), 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 6b ), [1,2-bis(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21a ), [1-(1,3-benzodithiol-2-yliden)-2-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21b ), [1,2-bis(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)ethyl]ferrocene ( 21c ), [1-(5,6-dihydro-1,3-dithiolo[4,5-b] [1,4]dithiin-2-yliden)-2-(1,3-benzodithiol-2-yliden)ethyl]ferrocene ( 21d )) were prepared and fully characterized. Their redox properties show that some of them are easily oxidized and undergo transformation to paramagnetic salts containing bis(maleonitriledithiolato)-metallate(III) anions [M(mnt)2] (M=Ni, Pt; bis[2,3-dimercapto-κS)but-2-enedinitrilato(2)]nickelate (1) or -platinate (1). The derivatives [ 3a ] [Ni(mnt)2] ( 26 ), [ 3a ] [Pt(mnt)2] ( 27 ), [Fe{(η5-C5Me4S)2S}] [Ni(Mnt)2] ( 28 ), [Fe{(η5-C5Me4S)2S}] [Pt(mnt)2] ( 29 ), [ 5 ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 30 ), [ 6a ] [Ni(mnt)2] ( 31 ), [ 6a ] [Ni(mnt)2]⋅ClCH2CH2Cl ( 31a ), [ 6a ] [Pt(mnt)2] [ 32 ), and [ 6b ] [Ni(mnt)2] ( 33 ) were prepared and fully characterized, including by SQUID (superconducting quantum interference device) susceptibility measurements. X-Ray crystal-structural studies of the neutral ferrocene derivatives 6a , b , 21c , d , and 1,1′-bis[1-(1,3-benzodithiol-2-yliden)-2-oxoethyl]ferrocene ( 23 ), as well as of the charge-transfer salts 26 – 28 , 30 , and 31a , are reported. The salts 28 and 30 display both a D+AAD+ structural motif, however, with a different relative arrangement of the [{Ni(mnt)2}2]2− dimers, thus giving rise to different but strong antiferromagnetic couplings. Salt 26 exhibits isolated ferromagnetically coupled [{Ni(mnt)2}2]2− dimers. Salt 27 displays a D+AD+A structural motif in all three space dimensions, and a week ferromagnetic ordering at low temperature. Salt 31a , on the contrary, shows segregated stacks of cations and anions. The cations are connected with each other in two dimensions, and the anions are separated by a 1,2-dichloroethane molecule.  相似文献   

12.
Synthesis of Alkylphenols and -catechols from Plectranthus albidus (Labiatae) In the preceding paper, we described the isolation and structure elucidation of a series of even-numbered phenol- or pyrocatechol-derived 1-arylalkane-5-ones. To establish the assigned structures unambiguously and to have larger quantities available for physiological testing, the following compounds were prepared: in the alkylphenol series, 1-(4′-hydroxyphenyl)tetradecan-5-one ( 2a ), 1-(4′-hydroxyphenyl)hexadecan-5-one ( 2b ), and 1-(4′-hydroxyphenyl)octadecan-5-one ( 2c ); in the alkylcatechol series, 1-(3′,4′-dihydroxyphenyl)decan-5-one ( 3a ; not isolated as a natural compound), 1-(3′,4′-dihydroxyphenyl)dodecan-5-one ( 3b ), 1-(3′,4′-dihydroxyphenyl)tetradecan-5-one ( 3c ), 1-(3′,4′-dihydroxyphenyl)hexadecan-5-one ( 3d ), 1-(3′,4′-dihydroxyphenyl)octadecan-5-one ( 3e ), and 1-(3′,4′-dihydroxyphenyl)icosan-5-one ( 3f ); in the alkenylphenol series, (Z)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 4a ) and (E)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 4b ); in the alkenylcatechol series, (E,E)-1-(3′,4′-dihydroxyphenyl)deca-1,3-dien-5-one ( 1 ) and (Z)-1-(3′,4′-dihydroxyphenyl)octadec-13-en-5-one ( 5 ). All compounds proved to be identical with the previously assigned structures. Compound 1 was synthesized by regioselective aldol condensation of heptan-2-one with (E)-1-(3′,4′-dimethoxyphenyl)prop-2-enal ( 6d ; Scheme 1), the phenols 2a–c and the catechols 3a–f by addition of the corresponding alkyl Grignard reagent to 5-(4′-methoxyphenyl)- or 5-(3′,4′-dimethoxyphenyl)pentanal ( 17c and 18c , resp.; Scheme 4), and the olefins 4a, 4b and 5 from 17c or 18c via the 9-O-silyl-protected 13-(4′-methoxyphenyl)- or 13-(3′,4′-dimethoxyphenyl)tridecanals ( 26 and 27 , resp.) and Wittig olefination as the key steps (Scheme 5).  相似文献   

13.
In this work, a series of eight new spiro[3,4′]1,3-dihydro-2H-indol-2-one-2′-amino-4′,6′,7′,8′-tetrahydro-2′,5’(1’H,3’H)-quinazoline-diones were successfully synthesized through a three-component reaction of 1H-indole-2,3-diones (isatins), guanidine nitrate, and 1,3-cyclohexanediones, by use of Kit-6 mesoporous silica coated Fe3O4 nanoparticles (Fe3O4@SiO2@KIT-6) as a highly efficient magnetically separable nanocatalyst in aqueous media at 60°C. Several notable features of thiseco-friendly protocol are high yields of products, short reaction times, operational simplicity, and the use of easily available and recyclable catalyst.  相似文献   

14.
The mass spectra of derivatives of uridine, adenosine, cytidine and guanosine are recorded. Derivatization techniques include permethylation, acetylation, trifluoroacetylation, trimethylsilylation and the synthesis of 2′,3′-O-isopropylidenes and 2′,3′-O-phenylboronic esters. Sequential derivatization by a selective combination of some of these procedures results in nucleosides which are blocked with a characteristic group at the cis 1,2 diol position, and, which contain other substituent groups that enhance the volatility of the compound. The specific substitution at the cis-glycol region has been shown to be particularly useful in asymmetrically derivatizing dinucleoside phosphates since certain fragment ions from their mass spectra indicate the sequence of the two nucleoside components. Sequence isomers such as adenylyl-(3′-5′)-uridine and uridylyl-(3′-5′)-adenosine can be unambiguously distinguished.  相似文献   

15.
A Cp2ZrCl2-catalyzed cycloalumination of 3-methylidenespiro[cyclobutane-1,3′-(5′α)-cholestane] with Et3Al gives 3-ethyl-3-aluminadispiro[cyclopentane-1,1′-cyclobutane-3′,3″-(5″α)-cholestane] in 84% yield.  相似文献   

16.
UV irradiation of hexacarbonyl-μ-η6:6-1,1′-bi(2,4,6-cycloheptatrien-1-yl)dichromium(O) (I) in THF in the presence of 1,3-butadiene (A), E-1,3-pentadiene (B) and EE-2,4-hexadiene (C) causes preferentially a twofold [4 + 6]-cycloaddition and formation of the hexacarbonyl-μ-2–5 : 8.9-η-2′–5′ : 8′,9′-η-11,11′-bi(bicyclo-[4.4.1]undeca-2,4,8-trien-11-yl)dichromium(O) complexes (IVA–IVC). Partial decomplexation after the first [4 + 6]-cycloaddition yields isomeric tricarbonyl-2–5:8,9-η- (IIA–IIC) and tricarbonyl-2′–7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)bicyclo[4.4.1]undeca-2,4,8-triene}chromium(O) complexes (IIIA–IIIC). With 2,3-dimethyl-1,3-butadiene (D) mainly dicarbonyl-2–6 : 2′–4′-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethylbicyclo[4.4.1]undeca-2″, 4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}chromium(O) (VD) besides small amounts of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–7″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(2″, 4″,6″-cycloheptatrien-1″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VID) and tricarbonyl-2′-7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)-8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-triene}-chromium(O) (IIID) is obtained. VD adds readily CO to yield tricarbonyl-2–5 : 8,9-η-11,11′-bi(8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-trien-11-yl)chromium(O) (VIID). Finally D adds to VID under formation of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–5″ : 8″,9″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethyl-bicyclo[4.4.1]- undeca-2″,4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VIIID). From IVA–IVC the hydrocarbon ligands (IXA–IXC) can be liberated by P(OCH3)3 in good yields. The structures of the compounds IIA–IXC were determined by IR  相似文献   

17.
In this paper, we describe the synthesis and evaluation of molecularly imprinted polymers (MIPs), prepared using 2′,3′,5′-tri-O-acyluridines as ‘dummy’ templates, for the selective recognition of uridine nucleosides. The MIPs were synthesised using a non-covalent approach with 2,6-bis-acrylamidopyridine (BAAPy) acting as the binding monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent. The MIPs were evaluated in terms of capacity, selectivity and specificity by analytical and frontal liquid chromatography measurements. The results obtained in organic mobile phases suggest that the nucleosides are specifically bound to the polymer by the complementary hydrogen bonding motifs of the binding monomer and the nucleoside bases. The MIPs exhibited relatively high imprinting factors for 2′,3′,5′-tri-O-acyluridines, while they did not show any binding capacity for other nucleosides lacking the imide moiety on their base. Moreover, the presence of ester-COO groups in the EGDMA cross-linker may lead to the formation of additional hydrogen bonds with the 2′,3′ and/or 5′-OH of sugar part, allowing enhancement of the recognition of the uridine nucleosides. In aqueous media, results show that the binding is driven by hydrophobic interactions.  相似文献   

18.
Isolation and Structure of Long-Chain Alkylphenols and -catechols from Plectranthus albidus (Labiatae) From the title plant, a series of even-numbered long-chain, phenol- or pyrocatechol-derived 1-arylalkan-5-ones was isolated by classical chromatography and preparative reversed phase HPLC. By chemical and spectroscopic methods, including coupled chromatographic techniques (GC/MS/FT-IR, HPLC/MS), their structures were established to be 1-(4′-hydroxyphenyl)tetradecan-5-one ( 2a ), 1-(4′-hydroxyphenyl)hexadecan-5-one ( 2b ), 1-(4′-hydroxyphenyl)octadecan-5-one ( 2c ), and (Z)-1-(4′-hydroxyphenyl)octadec-13-en-5-one ( 2d ); (E,E)-1-(3′,4′-dihydroxyphenyl)deca-1,3-dien-5-one ( 1a ), 1-(3′,4′-dihydroxyphenyl)dodecan-5-one ( 3a ), 1-(3′,4′-dihydroxyphenyl)-tetradecan-5-one ( 3b ), 1-(3′,4′-dihydroxyphenyl)hexadecan-5-one ( 3c ), 1-(3′,4′-dihydroxyphenyl)octadecan-5-one ( 3d ), 1-(3′,4′-dihydroxyphenyl)icosan-5-one ( 3e ), and (Z)-1-(3′,4′-dihydroxyphenyl)octadec-13-en-5-one ( 3f ). In vitro, the compounds show significant antioxidant activity, the inhibitory concentration of the most potent one, 1a , being slightly lower than for 2-(tert-butyl)-4-methoxyphenol (BHA) and 2,6-di(tert-butyl)-4-methylphenol (BHT) in the Fe2+-catalysed autooxidation of linoleic acid, whereas the acitivities of phenols 2a–d are in the same order of magnitude as α-tocopherol.  相似文献   

19.
The original Karplus parameters for analysing 3J(POCC) magnitudes of nucleotides in terms of conformational properties of the O? C bond were taken from results for 3′,5′-nucleotides and applied to 3′→ 5′-oligonucleotides; the parameters were later modified to take account of ‘largey’ magnitudes of 3J(POCC) observed in 2′ → 5′-oligonucleotides. In this work the origin of this discrepancy is explained in terms of substituent electronegativity effects at C-1′, and quantified using the 13C NMR results of 2′,3′-cyclic mononucleotides. A new set of Karplus parameters suitable for analysing 3J(POCC) magnitudes in 3′- and 5′-nucleotides and 3′ → 5′-oligonucleotides is determined from 13C NMR measurements on 3′-nucleotides and available results for 3′,5′-cyclic mononucleotides. A method of dealing with J(P, C-1′) coupling in 2′-nucleotides, 2′,3′-cyclic nucleotides and 2′ → 5′-oligonucleotides using the same Karplus relationship is suggested.  相似文献   

20.
Novel alkyl thiophosphoramidate derivatives of nucleosde analogues(5) have been prepared by phosphochloridothioate chemistry.O-Isopropyl 2‘,3‘-O-isopropylidene uridine-5‘-yl N-thiophosphoryl threonine and serine methyl esters(5a and 5b )underwent the intramolecular catalyzed hydrolysis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号