首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在动态Monte Carlo模拟的协同运动算法中,几个相邻的链节可以同时运动,这可以理解为高分子链中张力的作用引起的协同运动。将这一算法用于二维三角格子模型上RW链和SAW链的模拟。结果表明RW链的动力学行为符合Rouse理论,说明说明该算法可以用于高分子动力学研究,其优点是不需要使用键长涨落模型。  相似文献   

2.
In this paper, we present computer simulation results concerning interdiffusion of fully compatible components in symmetric binary (AB) polymer mixtures in solutions. The simulation is performed in two dimensions using the algorithm based on the dynamic lattice liquid model. The solvent molecules are taken into account explicitly. The evolution of the concentration profiles in time at an interface is studied for chain lengths N=2,4,8,16 for three polymer concentrations phi=0.1,0.5,0.9. The tracer diffusion coefficients for polymer chains and for the solvent are obtained by monitoring the mean square displacements of their center of mass. The relationships between coefficients of interdiffusion and self-diffusion are tested.  相似文献   

3.
We present results of a Monte Carlo simulation of dense melts of semi-flexible polymers using the bond-fluctuation model. The chosen Hamiltonian increases the chain stiffness upon cooling which in turn leads to glass-transition like freezing of the polymer mobility. Employing an efficient simulation algorithm, which is able to equilibrate the simulated systems to lower temperature than the Rouse-type algorithm showing the glassy freezing, we are able to observe an isotropic-nematic phase transition. This transition lies above the glass transition temperature one would extrapolate from the observed freezing behavior.  相似文献   

4.
在高分子动力学的研究中 ,动态 Monte Carlo模拟发挥了重要的作用 [1] .动态 Monte Carlo模拟的关键是选择具有物理真实性的高分子运动算法 .目前广为采用的算法是经 Hilhorst和 Deutch[2 ] 修正的 Verdier- Stockmayer算法 [3] 以及 Carmesin和 Kremer等的键长涨落算法 [4 ] ,陆建明和杨玉良曾提出一种高分子动态算法 [5] ,在他们的算法中很长一段链节可能作蛇行运动 ,但是冯捷等 [6 ] 指出这种运动模式不满足微观可逆性条件 .本文对该运动模式进行修正 ,得到一种协同运动算法 ,并对其动力学行为进行检验 .1 算 法在平面正方形格子…  相似文献   

5.
A model is presented for the simulation of the structuration of polymer particles under conditions in which the new polymer chains are compatible with the polymer previously formed. The model involves the calculation of the monomer concentration gradients within the particles due to discrepancies in thermodynamic interactions between the monomer and the different polymers present in each part of the polymer particle. In addition, the distribution of free radicals in the latex particle is taken into account. This distribution results from the anchoring of the hydrophilic end-group of the growing polymer chain on the surface of the particle. The model was applied to the simulation of the polymerization of vinyl acetate on a butyl acrylate–vinyl acetate copolymer seed. It was found that the development of the particle morphology was mainly due to the profile of concentration of radicals in the particle. On the other hand, the effect of the monomer–polymer thermodynamic interactions on the particle morphology was found to be negligible. However, it has to be pointed out that this is because, for the system studied, the interaction parameters of vinyl acetate with polyvinyl acetate and polybutyl acrylate are nearly identical.  相似文献   

6.
The full‐chain dynamics and the linear viscoelastic properties of monodisperse, entangled linear and star polymers are simulated consistently via an equilibrium stochastic algorithm, based on a recently proposed full‐chain reptation theory 1 that is able to treat self‐consistently mechanisms of chain reptation, chain‐length fluctuations, and constraint release. In particular, it is the first time that the full‐chain simulation for star polymers is performed without subjecting to the great simplifications usually made. To facilitate the study on linear viscoelasticity, we employ a constraint release mechanism that resembles the idea of tube dilation, in contrast to the one used earlier in simulating flows, where constraint release was performed in a fashion similar to double reptation. Predictions of the simulation are compared qualitatively and quantitatively with experiments, and excellent agreement is found for all investigated properties, which include the scaling laws for the zero‐shear‐rate viscosity and the steady‐state compliance as well as the stress relaxation and dynamic moduli, for both polymer systems. The simulation for linear polymers indicates that the full‐chain reptation theory considered is able to predict very well the rheology of monodisperse linear polymers under both linear viscoelastic and flow conditions. The simulation for star polymers, on the other hand, strongly implies that double reptation alone is insufficient, and other unexplored mechanisms that may further enhance stress relaxation of the tube segments near the star center seem crucial, in explaining the linear viscoelasticity of star polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 248–261, 2000  相似文献   

7.
The elastic behavior of the polymer chain was investigated in a three-dimensional off-lattice model. We sample more than 109 conformations of each kind of polymer chain by using a Monte Carlo algorithm, then analyze them with the non-Gaussian theory of rubberlike elasticity, and end with a statistical study. Through observing the effect of the chain flexibility and the stretching ratio on the mean-square end-to-end distance, the average energy, the average Helmholtz free energy, the elastic force, the contribution of energy to the elastic force, and the entropy contribution to elastic force of the polymer chain, we find that a rigid polymer chain is much easier to stretch than a flexible polymer chain. Also, a rigid polymer chain will become difficult to stretch only at a quite high stretching ratio because of the effect of the entropy contribution. These results of our simulation calculation may explain some of the macroscopic phenomena of polymer and biomacromolecular elasticity.  相似文献   

8.
We describe a hybrid Monte Carlo algorithm, combining molecular dynamics with the Monte Carlo method, applied to the simulation of polymer systems. It is shown that observables are independent of the discretization error, and the performance, i.e., autocorrelation times of observables, is analyzed. For a dense system representing a polyethylene melt, we present data for the pair distribution function and the mean square displacement of a chain in the bulk. We also investigate the possibility of using a scaled Hamiltonian in the algorithm.  相似文献   

9.
设计了一种新的Monte Carlo算法,在计算机上模拟了高分子链的超声裂解过程。首先根据Ovenall模型用遍历法对高分子链进行模拟断裂,随后进行倒接,进而反演了整个裂解过程。在获得大量模拟结果的基础上,分别研究了极限断裂次数的频率分布,最可几极限断裂次数与聚合度之间的关系,极限断片长度的平均分布,以及分子量多分散系数与裂解程度之间的关系。  相似文献   

10.
The photoelectric power conversion efficiency of polymer solar cells is till now, compared to conventional inorganic solar cells, still relatively low with maximum values ranging from 7% to 8%. This essentially relates to the existence of exciton and charge carrier loss phenomena, reducing the performance of polymer solar cells significantly. In this paper we introduce a new computer simulation technique, which permits to explore the causes of the occurrence of such phenomena at the nanoscale and to design new photovoltaic materials with optimized opto-electronic properties. Our approach consists in coupling a mesoscopic field-theoretic method with a suitable dynamic Monte Carlo algorithm, to model the elementary photovoltaic processes. Using this algorithm, we investigate the influence of structural characteristics and different device conditions on the exciton generation and charge transport efficiencies in case of a novel nanostructured polymer blend. More specifically, we find that the disjunction of continuous percolation paths leads to the creation of dead ends, resulting in charge carrier losses through charge recombination. Moreover, we observe that defects are characterized by a low exciton dissociation efficiency due to a high charge accumulation, counteracting the charge generation process. From these observations, we conclude that both the charge carrier loss and the exciton loss phenomena lead to a dramatic decrease in the internal quantum efficiency. Finally, by analyzing the photovoltaic behavior of the nanostructures under different circuit conditions, we demonstrate that charge injection significantly determines the impact of the defects on the solar cell performance.  相似文献   

11.
We introduce a new, topologically-based method for coarse-graining polymer chains. Based on the wavelet transform, a multiresolution data analysis technique, this method assigns a cluster of particles to a coarse-grained bead located at the center of mass of the cluster, thereby reducing the complexity of the problem by dividing the simulation into several stages, each with a fraction of the number of beads as the overall chain. At each stage, we compute the distributions of coarse-grained internal coordinates as well as potential functions required for subsequent simulation stages. In this paper, we present the basic algorithm, and apply it to freely jointed chains; the companion paper describes its applications to self-avoiding chains.  相似文献   

12.
In free‐radical olefin polymerizations, the polymer transfer reactions could lead to chain scission as well as forming long‐chain branches. For the random scission of branched polymers, it is virtually impossible to apply usual differential population balance equations because the number of possible scission points is dependent on the complex molecular architecture. On the other hand, the present problem can be solved on the basis of the probability theory by considering the history of each primary polymer molecule in a straightforward manner. The random sampling technique is used to solve this problem and a Monte Carlo simulation method is proposed. In this simulation method, one can observe the structure of each polymer molecule formed in this complex reaction system, and virtually any structural information can be obtained. In the illustrative calculations, the full molecular weight distribution development, the gel point determination, and examples of two‐ and three‐dimensional polymer structure are shown. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 391–403, 2001  相似文献   

13.
The process during which a polymer translocates through a nanopore depends on many physical parameters and fundamental mechanisms. We propose a new one-dimensional lattice Monte Carlo algorithm that integrates various effects such as the entropic forces acting on the subchains that are outside the channel, the external forces that are pulling the polymer through the pore, and the frictional effects that involve the chain and its environment. Our novel approach allows us to study the polymer as a single Brownian particle diffusing while subjected to a position-dependent force that includes both the external driving forces and the internal entropic bias. Frictional effects outside and inside the pore are also considered. This Monte Carlo method is much more efficient than other simulation methods, and it can be used to obtain scaling laws for various polymer translocation regimes. In this first part, we derive the model and describe a subtle numerical approach that gives exact results for both the escape probability and the mean translocation time (and higher moments of its distribution). The scaling laws obtained from this model will be presented and discussed in the second part of this series.  相似文献   

14.
The behavior of a polymer chain immersed in a binary solvent mixture is investigated via a single-polymer simulation using an effective Hamiltonian, where the solvent effects are taken into account through a density-functional theory for polymer-solvent admixtures. The liquid-liquid phase separation of the binary solvent mixture is modeled as that of a Lennard-Jones binary fluid mixture with weakly attractive interactions between the different components. Two types of energetic preferences of the polymer chain for the better solvent-(A) no preferential solvophilicity and (B) strong preferential solvophilicity-are employed as polymer-solvent interaction models. The radius of gyration and the polymer-solvent radial distribution functions are determined from the simulations of various molar fractions along an isotherm slightly above the critical temperature of the liquid-liquid phase separation. These quantities near the critical point conspicuously depend on the strength of the preferential solvophilicity. In the case where the polymer exhibits a strong preferential solvophilicity, a remarkable expansion of the polymer chain is observed near the critical point. On the other hand, in the case where the polymer has no preferential solvophilicity, no characteristic variation of the polymer conformation is observed even near the critical point. These results indicate that the expansion of a polymer chain enhances the local phase separation around it, acting as a nucleus of demixing in the vicinity of the critical point. This phenomenon in binary solvents near the liquid-liquid critical point is similar to the expansion of the polymer chain in one-component supercritical solvents near the liquid-vapor critical point, which we have reported [T. Sumi and H. Sekino J. Chem. Phys. 122, 194910 (2005)].  相似文献   

15.
Complex crosslinked polymer structures can be quite easily modeled with the aid of computers. BTOSYM's implementation of an algorithm that has been developed by Eichinger and his co-workers over the last few years is described. This algorithm allows us to model both random (as in sulfur-cured rubber) and site-specific (as in end-linked silicones) crosslinking reactions. The simulation method provides detailed information on gel points, cycle rank, modulus of elasticity and other characteristics of the networks as they are formed. Illustrative results obtained with the program are presented.  相似文献   

16.
Using methods adapted from the simulation of suspension dynamics, we have developed a Brownian dynamics algorithm with multibody hydrodynamic interactions for simulating the dynamics of polymer molecules. The polymer molecule is modeled as a chain composed of a series of inextensible, rigid rods with constraints at each joint to ensure continuity of the chain. The linear and rotational velocities of each segment of the polymer chain are described by the slender-body theory of Batchelor [J. Fluid Mech. 44, 419 (1970)]. To include hydrodynamic interactions between the segments of the chain, the line distribution of forces on each segment is approximated by making a Legendre polynomial expansion of the disturbance velocity on the segment, where the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution is specified by a center of mass force, couple, and stresslet on each segment. This method for calculating the hydrodynamic interactions has been successfully used to simulate the dynamics of noncolloidal suspensions of rigid fibers [O. G. Harlen, R. R. Sundararajakumar, and D. L. Koch, J. Fluid Mech. 388, 355 (1999); J. E. Butler and E. S. G. Shaqfeh, J. Fluid Mech. 468, 204 (2002)]. The longest relaxation time and center of mass diffusivity are among the quantities calculated with the simulation technique. Comparisons are made for different levels of approximation of the hydrodynamic interactions, including multibody interactions, two-body interactions, and the "freely draining" case with no interactions. For the short polymer chains studied in this paper, the results indicate a difference in the apparent scaling of diffusivity with polymer length for the multibody versus two-body level of approximation for the hydrodynamic interactions.  相似文献   

17.
We investigate the behavior of a tethered polymer in Poiseuille flow using a multiscale algorithm. The polymer, treated using molecular dynamics, is coupled to a solvent modeled by the stochastic rotation algorithm, a particle-based Navier-Stokes integrator. The expected series of morphological transitions of the polymer: sphere to distorted sphere to trumpet to stem and flower to rod are recovered, and we discuss how the polymer extension depends on the flow velocity. Backflow effects cause an effective increase in viscosity, which appears to be primarily due to the fluctuations of the free end of the polymer.  相似文献   

18.
In this paper, we developed two types of programs in order to simulate the polymerization reaction of a fully deuterated crystal of diacetylene 2,4‐hexadiynylene bis(p‐toluenesulfonate) (pTS‐D). The first simulation is based on a modification of Baughman's model, a classical model for simulating the polymerization of diacetylene crystals. The agreement between the simulated and experimental results concerning the reaction kinetics is satisfactory. With this simulation algorithm, we take into account the experimental observation that the polymerization of pTS‐H and pTS‐D crystals is really a random process of formation of polymer chains along the crystallographic axis b . The second simulation is based on the Monte Carlo method, which permits not only to simulate the kinetics of the reaction, but also the chain‐length distribution in the hydrogenated and deuterated compounds. These two types of simulations were already developed for the hydrogenated crystal of diacetylene, named pTS‐H. Two main modifications are applied in the case of pTS‐D for taking into account experimental results: in the first the rate constants of chain‐terminating microscopic processes are different in pTS‐H and pTS‐D which must be considered. The second modification concerns the evolution of the lattice deformation during the course of polymerization. The experimental variation of the b parameter as a function of polymer content X in pTS‐D is different from that in pTS‐H; this result is important to consider when calculating the activation energy of the initiation and propagation microscopic processes.  相似文献   

19.
The algorithm by Northrup, Allison, and McCammon [J. Chem. Phys. 80, 1517 (1984)] has been used for two decades for calculating the diffusion-influenced rate-constants of enzymatic reactions. Although many interesting results have been obtained, the algorithm is based on the assumption that substrate-substrate interactions can be neglected. This approximation may not be valid when the concentration of the ligand is high. In this work, we constructed a simulation model that can take substrate-substrate interactions into account. We first validated the model by carrying out simulations in ways that could be compared to analytical theories. We then carried out simulations to examine the possible effects of substrate-substrate interactions on diffusion-controlled reaction rates. For a substrate concentration of 0.1 mM, we found that the diffusion-controlled reaction rates were not sensitive to whether substrate-substrate interactions were included. On the other hand, we observed significant influence of substrate-substrate interactions on calculated reaction rates at a substrate concentration of 0.1M. Therefore, a simulation model that takes substrate-substrate interactions into account is essential for reliably predicting diffusion-controlled reaction rates at high substrate concentrations, and one such simulation model is presented here.  相似文献   

20.
A simple model of branched polymers in space confined between two parallel plates is developed. Star‐branched polymer molecules are built on a simple cubic lattice with excluded volume and no attractive interactions. A single star molecule is immersed in a network of irregularly dispersed linear rod‐like obstacles. The classical Monte Carlo Metropolis sampling algorithm is employed in the simulation. The aim of this study is to determine the effects of changes in dynamic properties of the star‐branched polymer as functions of the length of the molecule and the concentration of obstacles. Also the mechanism of motion of the polymer is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号