首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

2.
氢能具有能量密度高、清洁无污染等优势,被认为是理想的能源,受到越来越多的关注.利用太阳能和风能等可再生能源电解水制氢是一种极具发展前景的可以规模化获取清洁氢气的能源技术,其挑战在于如何降低电能消耗并实现稳定地高速电解制氢.由于电解水阳极析氧反应(OER)涉及四电子转移,动力学过程缓慢,是电解水过程的决速步骤.因此,开发高效、廉价、稳定的OER电催化剂对于推动电解水制氢的应用至关重要.硫族化合物具有良好的导电性,对OER中间体表现出适宜的吸附/脱附能力,是一类高活性的析氧电催化剂.但在析氧反应中硫族化合物会不可避免地发生氧化,导致其结构坍塌,使其性能发生大幅衰减.NiOOH被认为是Ni(OH)2、NiSe和NiS等镍基电催化剂析氧过程中的真实催化活性位点,在析氧反应过程中表现出优异的稳定性.因此,结合硫族化合物的高催化活性和羟基氧化物的高稳定性,将有望获得高效稳定的析氧电催化剂.本文提出了一种选择性硒掺杂的策略,实现了不锈钢基底上NiFe2O4/NiOOH异质结的选择性硒掺杂,获得了硒掺杂浓度可调的NiFe2O4-xSex/NiOOH异质结电催化剂,大幅提升了其电催化析氧性能.采用X射线衍射技术、拉曼光谱、扫描电镜和透射电镜技术等对NiFe2O4/NiOOH异质结的结构、形貌和组分进行了表征.利用X射线光电子能谱和透射电镜的能量色散光谱仪对硒掺杂产物的元素组成和分布进行了分析.结果表明,硒元素仅掺杂到NiFe2O4纳米颗粒中,而NiOOH纳米片骨架保持不变,保证了催化剂在析氧过程的稳定性.NiFe2O4-xSex/NiOOH异质结电极在1 M KOH溶液中表现出较好的析氧性能,达到10和500 mA cm?2电流密度所需要的过电位分别仅为153和259 mV,塔菲尔斜率为22.2 mV dec?1.更重要的是,NiFe2O4-xSex/NiOOH电催化剂的电化学性能稳定性,计时电流测试表明,在10~400 mA cm?2电流密度下可稳定工作.稳定性测试表明,催化剂在100 mA cm?2的电流密度下可稳定工作至少300 h.电催化过程研究表明,选择性硒掺杂提高了界面间电荷输运能力,改善了电极表面的浸润性,优化了活性位点的电子结构,从而大幅提高催化剂的电催化性能.密度泛函理论计算结果表明,硒掺杂会导致NiFe2O4表面晶格发生畸变,显著改善了反应中间体的吸附过程,因此明显降低了析氧反应决速步骤的能垒.本研究结果将为未来探索高效和稳定的电催化剂提供新的研究思路.  相似文献   

3.
开发用于析氧反应(OER)的高性能非贵金属催化剂有望提高电解水制氢的效率,促进氢能的开发利用。本研究采用简便的一步溶剂热法在泡沫镍(NF)上原位生长NiC2O4-Co(草酸镍钴)双金属电催化剂,可应用于高效的析氧反应。在1 mol/L KOH溶液中,自支撑NiC2O4-Co1双金属催化剂在10 mA/cm2下的析氧过电位仅为278 mV,塔菲尔斜率为65 mV/dec,并显现出优异稳定的OER性能。NiC2O4-Co双金属催化剂优异的性能归因于优化的电子结构,增大的比表面积,快速的界面电荷转移能力,以及OER过程中Ni位点和Co位点之间的协同效应。  相似文献   

4.
与助催化剂形成异质结,通过调整活性位点的电子结构和电荷输运来提高Ni2P的电催化活性是一种可行的方法。本文成功构建了一种高效的Cu3P/Ni2P异质结催化剂,其中Cu3P本身仅作为助催化剂,通过调节Ni2P的电子转移和表面重构来提高电催化活性。结果表明,在10 mA·cm-2的电流密度下,Cu3P/Ni2P具有优异的析氧反应(OER)活性,过电位为213 mV。结合实验结果和理论计算可知,Cu3P助催化剂可以有效调整Ni中心的电子结构,实现电荷重分布,降低反应能垒,从而显著提高OER催化活性。此外,Cu3P助催化剂诱导的丰富的晶界和晶格畸变促进了表面重构,形成Ni5O(OH)9,为OER提供了有效的活性位点。本工作通过引入助催化剂构建了一种新型异质结电催化剂,为优化过渡金属磷化物的电催化性能提供了一条有效途径。  相似文献   

5.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeOxHy和NiFeOxHy/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeOxHy/rGO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

6.
氢能是未来替代化石燃料的理想选择,可以通过电解水的半反应之一析氢反应制得,但其缓慢的反应动力学将会耗费大量的电池电压。因此,通过开发催化剂来降低电解槽的电压是解决这一问题的关键途径。本文经过简便的静电纺丝及碳化工艺得到Ce改性的碳纤维作为载体(Ce-CNFs),接着通过水热法及高温磷化法负载活性组分得到Cox-Moy-P@Ce-CNFs,分别对催化材料的析氢反应(HER)和析氧反应(OER)电催化活性进行了研究。结果表明,在1mol/L KOH电解液中,仅需要160mV和323mV的过电位就能达到10mA/cm2的电流密度。将Cox-Moy-P@Ce-CNFs作为阴极和阳极材料组装为整体水电解槽,在电流密度为10mA/cm2时,电解槽的电池电压为1.65V,在电化学耐久性测试中能够稳定保持8h。  相似文献   

7.
过渡金属氧化物是一种具有高效催化活性的电解水析氧反应催化剂,但低电子电导率限制了其催化活性,将活性纳米材料与导电基质材料复合,是构筑高性能电极材料或电化学催化剂的有效途径。采用溶剂热法制备了负载在C3N4上的聚合卟啉,经Co元素修饰和热处理后得到Co3O4/NC催化剂,采用XRD、SEM、TEM、XPS和FT-IR等方法对催化剂的物理化学性质进行表征。结果表明,Co3O4/NC-600具有超小纳米Co3O4结构,且其含氮量高,吡啶N与Co之间产生了协同作用,催化剂在OER反应中表现出良好的催化性能,其Tafel斜率仅为66.4 mV/dec,达到10 mA/cm2的电流密度所需的过电势为343.3 mV。  相似文献   

8.
发展高效稳定的析氢反应(HER)是实现电解水技术广泛应用于工业的关键.本文以泡沫镍(NF)为基材,通过水热-热解-电沉积法合成了具有三维高分散非均相的HER催化剂CuAl@Co2P/NF.研究发现,晶面与非晶面异质结的形成增加了该催化剂自身的活性位点,各元素之间的协同作用使体系内Co原子核外电子重新排布,降低了对吸附H~*的吸附能力,加快了析氢反应过程中的反应动力学.该催化剂在碱性和酸性介质中均表现出良好的HER活性和稳定性,电流密度为10 mA/cm2时的过电势分别为83和27 mV,尤其在碱性环境下连续工作72 h后的电位基本保持不变.  相似文献   

9.
采用快速凝固与脱合金相结合的方法制备了纳米多孔Ni, 经热处理氧化获得纳米多孔NiO, 利用X射线衍射仪(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和氮气吸附-脱附仪(BET)对纳米多孔Ni和NiO的物相、 形貌结构和孔径分布进行了表征, 并通过循环伏安、 稳态极化和电化学阻抗分析研究了电极的电催化析氧性能. 结果表明, 由Ni30Al70所得纳米多孔Ni具有多层次纳米多孔结构, 在10 mA/cm 2电流密度下析氧过电位仅为224 mV, 交换电流密度为0.63297 mA/cm 2, 表观活化自由能为40.297 kJ/mol, 经1000次循环后, 过电位降低了5 mV(j=10 mA/cm 2), 表现出良好的催化稳定性和耐久性; 热处理氧化降低了NiO的比表面积与电化学活性面积, 平衡电位下扩散传质速率明显减小, 析氧活性较Ni电极有所下降.  相似文献   

10.
析氧反应是金属-空气电池和电解水制氢等电化学系统中关键的反应,研究其高效稳定非贵金属电催化剂至关重要。本文以金属有机骨架化合物(MOF)作为前驱体,通过高温煅烧制备了具有多壳层中空结构的镍钴双金属磷化物(NiCo-P)。这种独特的结构有利于电解液的渗透,能够提供丰富的暴露活性位点和快速传质路径,同时,镍钴双金属具有协同作用促进电化学性能。结果表明,n(Ni)∶n(Co)=1∶10制备的NiCo-P-0.1催化剂在1.0 mol/L KOH电解液中表现出良好的催化活性和稳定性,在10 mA/cm^(2)电流密度的过电势为329 mV,具有良好的应用前景。本工作为高活性和高稳定性的电催化析氧催化剂的制备提供了一种全新途径。  相似文献   

11.
高性能酸性电解水催化剂的开发是质子交换膜电解水技术的重要研究方向。在本工作中,通过将Ag掺杂到γ?MnO2(MO)中,获得了高性能Ag?MnO2(AMO)酸性析氧电催化剂。Ag的掺杂优化了MO的电子结构,提高了MO的析氧反应活性。最优催化剂获得10 mA/cm2电流密度的过电位为398 mV,比MO降低了28 mV。此外,Ag的掺杂提高了MO的反应稳定性。最优催化剂在100 mA/cm2的大电流密度下可稳定运行500小时以上,在高达500 mA/cm2的电流密度下也可稳定运行50小时以上,是目前在大电流密度工作条件下最稳定的非贵金属酸性析氧电催化剂之一。  相似文献   

12.
采用一步水热法,通过改变反应温度和硫酸的用量,在碳纸(CFP)表面可控合成了α?MnO2纳米线和δ?MnO2纳米片阵列,研究了MnO2纳米阵列的电催化析氧反应(OER)性能。结果表明,在碱性介质中,α?MnO2纳米线阵列的OER活性优于δ?MnO2纳米片阵列,在电流密度为10 mA·cm-2时,α?MnO2纳米线阵列的析氧过电位为444 mV(δ?MnO2纳米片的过电位为522 mV)。通过X射线光电子能谱的表征分析可知,更高含量的Mn3+和表面更丰富的氧空位浓度是α?MnO2纳米线阵列催化活性更高的原因。  相似文献   

13.
非贵金属铁镍合金催化剂在析氧反应(OER)中性能优异,表现出取代贵金属RuO2催化剂的巨大潜力.以SiO2为大孔模板,多巴胺为氮碳源,Fe3+,Ni2+为金属源,通过原位吸附、聚合、焙烧、刻蚀等步骤制备得到铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂.碱性介质中的析氧反应测试表明,合金催化剂达到电流密度10 mA·cm-2时过电位仅为286 mV,显著低于以RuO2为催化剂的380 mV过电位;同时经过2000圈循环伏安老化后活性几乎无衰减,稳定性高.所制备的合金催化剂具有两方面结构优势:(1)铁镍合金以及单质铁纳米颗粒镶嵌于大孔碳的薄层孔壁中,有利于暴露活性位点;(2)石墨化氮碳层对合金纳米颗粒的保护提高了材料抗腐蚀性,进而提升其稳定性.  相似文献   

14.
析氧反应(oxygen evolution reaction, OER)和氧还原反应(oxygen reduction reaction, ORR)是可充电锌空电池(rechargeable Zn-air batteries, RZABs)重要的两个反应。其中,析氧反应具有较高的热力学平衡电位和复杂的反应路径,实际应用中需要高的充电电压驱动其发生,这将带来一系列问题并且限制了RZABs的商业化应用。基于此,本研究构造α-MnO2并作为ORR/IOR双功能催化剂。在碱性体系中引入反应改性剂KI,α-MnO2对碘离子氧化反应(iodide oxidation reaction, IOR)具有更低的阳极氧化电位和更快的催化动力学。当1.0 mol/L KOH电解液中添加0.5 mol/L KI时,相比于OER(1.709 V@10 mA/cm2),α-MnO2在IOR过程中电流密度达到10 mA/cm2时阳极电位减小了398 mV(1.311 V vs. RHE),且表现出低至57.5 mV/dec塔菲尔...  相似文献   

15.
使用硫酸镍、硝酸铁、磷酸二氢铵和柠檬酸钠在泡沫镍为载体的基底上,采用电沉积方法制备出泡沫镍负载Ni磷化物(nickel phosphide)和泡沫镍负载Fe磷化物(iron phosphide)两种电催化剂,通过SEM测试表征催化剂的结构及形貌,并通过电化学测试催化剂的析氧和析氢及催化活性等参数。研究结果表明:在100mA/cm2电流密度下,Ni磷化物工业过电位为349mV,相较于Fe磷化物催化活性性能高了33%;Ni磷化物和Fe磷化物的催化面积(Cdl)值分别为27.01 mF/cm2和3.64 mF/cm2,Ni磷化物较Fe磷化物的活性面积提高近10倍。  相似文献   

16.
许友  任凯丽  徐蓉 《催化学报》2021,42(8):1370-1378
传统化石能源的大量消耗使得能源短缺和环境污染等问题日益严峻.社会的可持续发展需要进行能源结构调整,寻求清洁、可再生的替代能源已迫在眉睫.氢能作为一种可再生能源,其热值高,燃烧产物无污染,是未来最理想的能源形式之一.水裂解制氢是公认的未来清洁制氢的一种有效途径.然而,无论是电催化或光催化水裂解反应,析氧反应都是关键的半反应.因其复杂的四电子过程导致动力学缓慢,使得析氧半反应成为水裂解反应的瓶颈.长久以来,贵金属Ir和Ru基材料是被广泛研究的高活性的析氧催化剂.然而高成本和低储量极大地限制了它们的大规模工业化应用.因此,开发高效、储量丰富的析氧催化剂,意义重大但仍充满挑战性.本文考察了一种简便而有效的合成策略,在碱性水溶液条件下,成功实现将一系列Fe基金属有机框架(MOF)前驱物原位转化为无定形Fe基双金属氢氧化物纳米结构.这些由MOF前驱物转化得到的氢氧化物纳米结构保留了前驱体纳米棒的宏观形貌,由许多超细的无定形纳米颗粒(平均粒径小于10 nm)构成,在催化反应中可以提供丰富的催化活性位,相邻的纳米颗粒之间紧密接触,有利于电子在催化活性位之间传递.以玻碳电极作为基底,通过组分优化得到的NiFe-OH-0.75催化剂样品在电催化析氧反应中仅需270 mV的过电位便可达到10 mA cm-2的电流密度,Tafel斜率为39 mV dec-1.将催化剂负载到三维泡沫镍基底上时,由于电极基底导电性提升以及传质增加,在10 mA cm?2的电流密度所需的过电位可以降低到235 mV,Tafel斜率为37 mV dec?1,并且表现出较好的稳定性.同时,本文进一步证实这些无定形氢氧化物可以用作助催化剂,与合适的光敏剂结合,实现有效的光催化水氧化反应.在KH2PO4-K2HPO4缓冲溶液(pH=9)体系中,以[Ru(2,2’-bipyridine)3]Cl2为光敏剂,Na2S2O8为电子受体,由CoFe-MIL-0.75前驱体转化所得到的CoFe-OH-0.75助催化剂表现出更优越的光催化产氧性能,产氧效率可达59.6%.本文结果可以为其他基于MOF及其相关衍生材料的制备提供新思路.  相似文献   

17.
以2,3,6,7,10,11 -六羟基三亚苯(2,3,6,7,10,11-Hexahydroxytriphenylene, HHTP)为有机配体, Ni、Co为金属中心, 通过水热法制备了对应的儿茶酚酯盐(Ni-catecholate、Ni-Co-catecholate, 以下简称Ni-CAT和Ni-Co-CAT). 对其进行表征后, 选用单室反应器装置搭建微生物燃料电池(Microbial fuel cell, MFC). 将Ni-CAT和Ni-Co-CAT与炭黑以3∶1的质量比混合后应用于MFC阴极催化氧还原反应(Oxygen reduction reaction, ORR). 结果表明, Ni-Co-CAT催化的MFC反应器性能最好, 其MFC反应器的最大输出电压和功率密度分别为310 mV和190 mW/cm2, 与商业Pt/C的性能相当. Ni-Co-CAT催化MFC的极限电流密度为2.84 mA/cm2, 优于Ni-CAT的2.18 mA/cm2, 表明在Ni-CAT结构中引入Co后, MFC产电效能得到了提升. 主要原因是, Ni-Co-CAT与炭黑充分混合后, 具有了更高的孔隙率和比表面积, 其结构上的金属位点M-O6 (M=Ni或Co)提供了更多的催化活性, 使Ni-Co-CAT具有最优的电化学催化性能.  相似文献   

18.
利用间歇性可再生能源电解水制备高纯度氢气具有广阔的应用前景.目前,在电催化析氢反应中,高效稳定的催化剂主要应用于由去离子水构成的酸性或碱性电解液.然而淡水资源的稀缺性极大地限制了其发展空间.海水资源在全球水资源储量占比高达97%,因此实现海水高效稳定制备氢气将极大程度缓解淡水资源对于电催化析氢反应发展的限制.金属磷化物具有良好的电子传输能力,有利于促进析氢反应动力学.合理调节金属磷化物的电子结构,有利于其对反应中间体的吸附和氢气的脱附,从而促进产氢.同时,金属磷键能够稳定金属原子,防止反应过程中金属原子的溶解失活,从而提高催化剂稳定性.构建负载型金属磷化物异质结能够引入更多的析氢反应活性位点,进一步促进催化剂对水的吸附和中间体的活化.而且金属磷化物与高导电性和分散性的载体之间的强相互作用有助于催化剂活性的综合提升.尽管负载型磷化物异质结展现出了良好的析氢性能,但其在海水中的析氢本征活性仍难以超越商业铂碳催化剂.基于此,本文提出了一种简单快速的无溶剂微波方法,并成功制备了一系列Ru2P@Ru/CNT催化剂.催化剂的完整制备过程只需1 min,并且不涉及任何溶剂的使用.表征结果表明,负载在碳纳米管上的Ru2P@Ru纳米颗粒直径仅为2.5 nm左右.这是由于微波提供的高温将反应物快速烧结成所需的晶相,同时,较短的反应时间限制了纳米颗粒的尺寸的增长,并减少了挥发性元素的损失.电化学测试结果表明,比例优化后的Ru2P@Ru/CNT(Ru2P:Ru=66:34)在1.0 mol/L KOH和真实碱性海水中分别只需要23和29 mV的过电位即可达到10 mA cm–2的电流密度,是已报道的非Pt基材料中催化效果较好的催化剂之一.并且,Ru2P@Ru/CNT具有出色的本征活性,在1.0 mol/L KOH和真实碱性海水中的转换频率分别为13.1和8.5 s–1,远超商业Pt/C.此外,本文进一步探索了Ru2P@Ru/CNT在高电流密度下的催化活性.电化学测试结果表明,Ru2P@Ru/CNT在1.0 mol/L KOH中仅需要77和104 mV的过电位即可达到500和1000 mA cm–2的电流密度.同时,经过100 h的稳定性测试,该催化剂无论在低电流密度、高电流密度以及碱性海水中都展示出了较好的稳定性.  相似文献   

19.
本文以雪莲果为碳源,采用热解法制备碳材料(C),以硝酸钴、四硼酸钠和碳材料为原料,通过热解法合成硼掺杂四氧化三钴/碳(B-Co3O4/C)复合纳米材料。运用XRD、FTIR、SEM、XPS等手段对其结构、形貌和组成进行表征。利用线性扫描(LSV)和Tafel曲线等电化学测试方法研究了B-Co3O4/C复合纳米材料的电催化析氧反应(OER)性能。结果表明,该材料具有较好的电催化OER活性。在1.0mol/L的KOH电解液和10mA·cm-2的电流密度下,B-Co3O4/C复合纳米材料的过电位为293mV,Tafel斜率为45.0mV·dec-1。在10mA·cm-2电流密度下连续测试10h, B-Co3O4/C的电位变化不大,通过法拉第效率测试该催化剂的产氧效率为94%,说明硼原子的掺入改变了B-Co3O4...  相似文献   

20.
采用一步水热法合成了硼、磷共掺杂铁钴材料(Fe-Co-B-P)。借助扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FT-IR)等技术对所合成材料的形貌、结构和组成进行表征。利用线性扫描伏安(LSV)、循环伏安(CV)、电化学阻抗谱(EIS)等技术研究材料电化学析氧反应(OER)性能。结果表明,Fe-Co-B-P表面疏松且粗糙,颗粒间有许多空隙。在电流密度为10和100 mA·cm-2时,其过电势分别为278和309 mV,Tafel斜率为24 mV·dec-1,说明该材料具有较优的电催化析氧性能。其在连续进行10 h的计时电位测试过程中,电势基本保持在1.55 V(vs RHE),表明该催化剂具有较好的电化学稳定性。这是由于铁钴双金属与硼、磷非金属之间的协同作用促进了电子的传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号