首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
This work explores the utility of simple rotary resonance experiments for the determination of the magnitude and orientation of 13C chemical shift tensors relative to one or more 13C–14N internuclear axes from 13C magic-angle-spinning NMR experiments. The experiment relies on simultaneous recoupling of the anisotropic 13C chemical shift and 13C–14N dipole–dipole coupling interactions using 2D rotary resonance NMR with RF irradiation on the 13C spins only. The method is demonstrated by experiments and numerical simulations for the 13Cα spins in powder samples of -alanine and glycine with 13C in natural abundance. To investigate the potential of the experiment for determination of relative/absolute tensor orientations and backbone dihedral angles in peptides, the influence from long-range dipolar coupling to sequential 14N spins in a peptide chain (14Ni13Cαi14Ni+1 and 14Ni+113C′i14Ni three-spin systems) as well as residual quadrupolar–dipolar coupling cross-terms is analyzed numerically.  相似文献   

2.
Triple-resonance NMR experiments for measuring three-bond scalar coupling constant between 13C' (i-1) and 1H(alpha)(i) spins, defining the dihedral angle phi, are presented. The novel experiments enable the measurement of 3JC'H(alpha)) from simple two (or three)-dimensional 13C', (15N/13C(alpha)), 1H(N) correlation spectra with minimal resonance overlap, thanks to solely intraresidual coherence transfer pathway and spin-state-selection. The 3J(C'H(alpha)) values measured in human ubiquitin using the proposed intraresidual iHN(CA),CO(alpha/beta-J-COHA) TROSY method were compared with those determined previously utilizing the HCAN[C'] experiment.  相似文献   

3.
Initial steps in the development of a suite of triple-resonance (1)H/(13)C/(15)N solid-state NMR experiments applicable to aligned samples of (13)C and (15)N labeled proteins are described. The experiments take advantage of the opportunities for (13)C detection without the need for homonuclear (13)C/(13)C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are approximately 20% randomly labeled with (13)C in all backbone and side chain carbon sites and approximately 100% uniformly (15)N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are (13)C labeled at only the alpha-carbon and (15)N labeled at the amide nitrogen of a few residues. The requirement for homonuclear (13)C/(13)C decoupling while detecting (13)C signals is avoided in the first case because of the low probability of any two (13)C nuclei being bonded to each other; in the second case, the labeled (13)C(alpha) sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the (13)C chemical shift and (1)H-(13)C and (15)N-(13)C heteronuclear dipolar coupling frequencies associated with the (13)C(alpha) and (13)C' backbone sites, which provide orientation constraints complementary to those derived from the (15)N labeled amide backbone sites. (13)C/(13)C spin-exchange experiments identify proximate carbon sites. The ability to measure (13)C-(15)N dipolar coupling frequencies and correlate (13)C and (15)N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the (13)C chemical shift and (1)H-(13)C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach.  相似文献   

4.
Two solid state NMR triple resonance experiments which utilize the simultaneous incrementation of two chemical shift evolution periods to obtain a spectrum with reduced dimensionality are described. The CO N CA experiment establishes the correlation of (13)C(i-1) to (13)C alpha(i) and (15)N(i) by simultaneously encoding the (13)CO(i-1) and (15)N(i) chemical shifts. The CA N COCA experiment establishes the correlation (13)Ca(i) and (15)CO(i) to (13)C alpha(i-1) and (15)N(i-1) within a single experiment by simultaneous encoding of the (13)C alpha(i) and (15)N(i) chemical shifts. This experiment establishes sequential amino acid correlations in close analogy to the solution state HNCA experiment. Reduced dimensionality 2D experiments are a practical alternative to recording multiple 3D data sets for the purpose of obtaining sequence-specific resonance assignments of peptides and proteins in the solid state.  相似文献   

5.
A novel nuclear magnetic resonance (NMR) experiment for facilitating the resolution and assignment of liquid crystalline (13)C NMR spectra is described. The method involves the motor-driven reorientation of the liquid crystalline director, in synchrony with the acquisition of a 2D chemical shift correlation spectrum. By monitoring in this fashion the (13)C NMR evolution of spins in the liquid crystal at two different director orientations with respect to the magnetic field, the method distinguishes anisotropic from isotropic displacements and can be utilized for assigning the resonances and estimating local degrees of order. Of various potential pairs of angles suitable for such a correlation, the (0 degrees, 90 degrees ) choice was found to be most convenient, as it avoids line broadening complications that may otherwise originate from heterogeneities of the oriented phase. The technique thus derived was employed in the analysis of a series of monomeric and polymeric liquid crystal systems.  相似文献   

6.
The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed.  相似文献   

7.
The use of rotational-echo double resonance NMR to measure distances from an observed tightly coupled cluster of 13C spins to a distant 15N, 31P, or 19F is practical if 13C chemical shifts and homonuclear 13C-13C isotropic J interactions are refocused by a combination of rotor-synchronized 13C pi and pi/2 pulses. This scheme is illustrated by experiments performed on diluted and recrystallized L-[13C(3),15N]alanine and L-[13C(6),alpha-15N]histidine.  相似文献   

8.
J couplings between (13)C(alpha) and (1)H(N) across hydrogen bonds in proteins are reported for the first time, and a two- or three-dimensional NMR technique for their measurement is presented. The technique exploits the TROSY effect, i.e., the degree of interference between dipolar and chemical shift anisotropy relaxation mechanisms, for sensitivity enhancement. The 2D or 3D spectra exhibit E.COSY patterns where the splittings in the (13)CO and (1)H(N) dimensions are (1)J((13)C(alpha), (13)CO) and the desired (3h)J((13)C(alpha), (1)H(N)), respectively. A demonstration of the new method is shown for the (15)N,(13)C-labeled protein chymotrypsin inhibitor 2 where 17 (3h)J((13)C(alpha), (1)H(N)) coupling constants ranging from 0 to 1.4 Hz where identified and all of positive sign.  相似文献   

9.
A two-dimensional (13)C/(14)N heteronuclear multiple quantum correlation (HMQC) experiment using dipolar recoupling under magic-angle spinning (MAS) is described. The experiment is an extension of the recent indirect (13)C detection scheme for measuring (14)N quadrupolar coupling under MAS. The recoupling allows the direct use of the much larger dipolar interaction instead of the small J and residual dipolar couplings for establishing (13)C/(14)N correlations. Two recoupling methods are incorporated into the HMQC sequence, both applying rf only to the observed (13)C spin. The first one uses the REDOR sequence with two pi-pulses per rotor cycle. The second one uses a cw rf field matching the spinning frequency, known as rotary resonance. The effects of CSA, T(2)(') signal loss, MAS frequency and stability and t(1)-noise are compared and discussed.  相似文献   

10.
Transverse relaxation-optimized NMR experiment (TROSY) for the measurement of three-bond scalar coupling constant between (1)H(alpha)(i-1) and (15)N(i) defining the dihedral angle psi is described. The triple-spin-state-selective experiment allows measurement of (3)J(H(alpha)N) from (13)C(alpha), (15)N, and (1)H(N) correlation spectra H(2)O with minimum resonance overlap. Transverse relaxation of (13)C(alpha) spin is minimized by using spin-state-selective filtering and by acquiring a signal longer in (15)N-dimension in a manner of semi-constant-time TROSY evolution. The (3)J(H(alpha))(N) values obtained with the proposed alpha/beta-HN(CO)CA-J TROSY scheme are in good agreement with the values measured earlier from ubiquitin in D(2)O using the HCACO[N] experiment.  相似文献   

11.
Sensitivity enhanced multiple-quantum 3D HCN-CCH-TOCSY and HCN-CCH-COSY experiments are presented for the ribose resonance assignment of (13)C/(15)N-labeled RNA sample. The experiments make use of the chemical shift dispersion of N1/N9 of pyrimidine/purine to distinguish the ribose spin systems. They provide a complementary approach for the assignment of ribose resonance to the currently used HCCH-COSY and HCCH-TOCSY type experiments in which either (13)C or (1)H is utilized to separate the different ribose spin systems. The pulse schemes have been demonstrated on a 23-mer (13)C/(15)N-labeled RNA aptamer complexed with neomycin and tested on a 32-mer RNA complexed with a 23-residue peptide.  相似文献   

12.
The use of rotational-echo double resonance NMR to measure distances from an observed tightly coupled cluster of 13C spins to a distant 15N, 31P, or 19F is practical if all homonuclear 13C-13C dipolar interactions are suppressed by multiple-pulse decoupling during heteronuclear dipolar evolution. This scheme is first calibrated by experiments performed on multiply labeled alanines and then applied in the measurement of 19F-13C distances in p-trifluoromethylphenyl [1,2-13C2]acetate.  相似文献   

13.
The proposed three-dimensional triple-resonance experiment HNCACBcodedHAHB correlates sequential 15N, 1H moieties via the chemical shifts of 13Calpha, 13Cbeta, 1Halpha, and 1Hbeta. The four sequential correlation pathways are achieved by the incorporation of the concept of chemical shift-coding [J. Biomol. NMR 25 (2003) 281] to the TROSY-HNCACB experiment. The monitored 1Halpha and 1Hbeta chemical shifts are then coded in the line shape of the cross-peaks of 13Calpha, 13Cbeta along the 13C dimension through an apparent residual scalar coupling, the size of which depends on the attached hydrogen chemical shift. The information of four sequential correlation pathways enables a rapid backbone assignment. The HNCACBcodedHAHB experiment was applied to approximately 85% labeled 13C,15N-labeled amino-terminal fragment of Vaccinia virus DNA topoisomerase I comprising residues 1-77. After one day of measurement on a Bruker Avance 700 MHz spectrometer and 8 h of manual analysis of the spectrum 93% of the backbone assignment was achieved.  相似文献   

14.
Side-chain carbon resonance assignments are difficult to obtain for larger proteins. While standard methods require protons for excitation and detection of magnetization, their presence is often unacceptable and often leads to unacceptable relaxation losses at the directly bound carbon sites. In this paper, pulse sequences are presented which provide connectivities between aliphatic side-chain (13)C and amide (1)H and (15)N chemical shifts in fully deuterated, (13)C/(15)N-enriched proteins. Magnetization either starts off from carbons or from both nitrogens and protons and is passed along the side-chain via (13)C-(13)C isotropic mixing. Direct rather than (13)CO-relayed (15)N-->(13)C(alpha) or (13)C(alpha)-->(15)N transfer steps allow the detection of intraresidual as well as sequential correlations. To avoid ambiguities between these two types in the three-dimensional version of the experiments, a fourth dimension can be introduced to achieve their separation along a (13)C(alpha) frequency axis. The novel methods are demonstrated with the uniformly (2)H/(13)C/(15)N labeled 35-kDa protein diisopropylfluorophosphatase from Loligo vulgaris.  相似文献   

15.
Triple-resonance experiments capable of correlating directly bonded and proximate carbon and nitrogen backbone sites of uniformly 13C- and 15N-labeled peptides in stationary oriented samples are described. The pulse sequences integrate cross-polarization from 1H to 13C and from 13C to 15N with flip-flop (phase and frequency switched) Lee-Goldburg irradiation for both 13C homonuclear decoupling and 1H-15N spin exchange at the magic angle. Because heteronuclear decoupling is applied throughout, the three-dimensional pulse sequence yields 13C shift/1H-15N coupling/15N shift correlation spectra with single-line resonances in all three frequency dimensions. Not only do the three-dimensional spectra correlate 13C and 15N resonances, they are well resolved due to the three independent frequency dimensions, and they can provide up to four orientationally dependent frequencies as input for structure determination. These experiments have the potential to make sequential backbone resonance assignments in uniformly 13C- and 15N-labeled proteins.  相似文献   

16.
A 31P and 13C NMR study of powder and single crystal samples of two phosphoenolpyruvate (PEP) compounds, the tris-ammonium salt monohydrate (NH4)3(PEP)·H2O (1), and the mono-ammonium-salt (NH4)(H2PEP) (2) is presented. The P chemical shielding tensors in 1 are measured by 31P single crystal NMR on four minuscule samples and assigned without ambiguity by exploiting the orientation-dependent 31P-31p dipolar splittings of the resonance lines. The orientation of the 31P chemical shielding tensor is discussed in terms of the C2v — and C3-type distortions of the phosphate PO4-coordination sphere. From 13C MAS NMR experiments with 31P rotary resonance recoupling on polycrystalline powder samples the orientations of the 31P chemical shielding tensors in 1 and 2 are obtained, for 1 in very good agreement with the 31P single crystal NMR results. Only some of the orientational parameters of the three 13C chemical shielding tensors in the PEP moiety of 1 could be derived from 13C MAS NMR experiments with 31P rotary resonance recoupling.  相似文献   

17.
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive (13)C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective (13)C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-(13)C]glucose preferentially labels the ends of the side chains, while [2-(13)C]glycerol labels the C(alpha) of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles phi; simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively (13)C labeled protein were performed using (15)N-(13)C 2D correlation spectroscopy. From the time dependence of the (15)N-(13)C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective (13)C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.  相似文献   

18.
An NMR pulse sequence is proposed for the simultaneous determination of side chain chi1 torsion-angle related (3)J(N,Cgamma) and (3)J(C', Cgamma) couplings in aromatic amino acid spin systems. The method is of the quantitative J correlation type and takes advantage of attenuated (15)N and (1)H transverse relaxation by means of the TROSY principle. Unlike previously developed schemes for the measurement of either of the two coupling types, spectra contain internal reference peaks that are usually recorded in separate experiments. Therefore, the desired information is extracted from a single rather than four data sets. The new method is demonstrated with uniformly (13)C/(15)N labeled Desulfovibrio vulgaris flavodoxin, which contains 14 aromatic out of 147 total amino acid residues.  相似文献   

19.
Several existing methods permit measurement of the torsion angles phi, psi and chi in peptides and proteins with solid-state MAS NMR experiments. Currently, however, there is not an approach that is applicable to measurement of psi in the angular range -20 degree to -70 degree, commonly found in alpha-helical structures. Accordingly, we have developed a HCCN dipolar correlation MAS experiment that is sensitive and accurate in this regime. An initial REDOR driven (13)C'--(15)N dipolar evolution period is followed by the C' to C(alpha) polarization transfer and by Lee--Goldburg cross polarization recoupling of the (13)C(alpha)(1)H dipolar interaction. The difference between the effective (13)C(1)H and (13)C(15)N dipolar interaction strengths is balanced out by incrementing the (13)C--(15)N dipolar evolution period in steps that are a factor of R(R approximately omega(CH)/omega(CN)) larger than the (13)C--(1)H steps. The resulting dephasing curves are sensitive to variations in psi in the angular region associated with alpha-helical secondary structure. To demonstrate the validity of the technique, we apply it to N-formyl-[U-(13)C,(15)N] Met-Leu-Phe-OH (MLF). The value of psi extracted is consistent with the previous NMR measurements and close to that reported in diffraction studies for the methyl ester of MLF, N-formyl-[U-(13)C,(15)N]Met-Leu-Phe-OMe.  相似文献   

20.
An in-depth account of the effects of homonuclear couplings and multiple heteronuclear couplings is given for a recently published technique for (1)H--(13)C dipolar correlation in solids under very fast MAS, where the heteronuclear dipolar coupling is recoupled by means of REDOR pi-pulse trains. The method bears similarities to well-known solution-state NMR techniques, which form the framework of a heteronuclear multiple-quantum experiment. The so-called recoupled polarization-transfer (REPT) technique is versatile in that rotor-synchronized (1)H--(13)C shift correlation spectra can be recorded. In addition, weak heteronuclear dipolar coupling constants can be extracted by means of spinning sideband analysis in the indirect dimension of the experiment. These sidebands are generated by rotor encoding of the reconversion Hamiltonian. We present generalized variants of the initially described heteronuclear multiple-quantum correlation (HMQC) experiment, which are better suited for certain applications. Using these techniques, measurements on model compounds with (13)C in natural abundance, as well as simulations, confirm the very weak effect of (1)H--(1)H homonuclear couplings on the spectra recorded with spinning frequencies of 25--30 kHz. The effect of remote heteronuclear couplings on the spinning-sideband patterns of CH(n) groups is discussed, and (13)C spectral editing of rigid organic solids is shown to be practicable with these techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号