首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We study double integral representations of Christoffel–Darboux kernels associated with two examples of Hermite-type matrix orthogonal polynomials. We show that the Fredholm determinants connected with these kernels are related through the Its–Izergin–Korepin–Slavnov (IIKS) theory with a certain Riemann-Hilbert problem. Using this Riemann-Hilbert problem we obtain a Lax pair whose compatibility conditions lead to a non-commutative version of the Painlevé IV differential equation for each family.  相似文献   

3.
We compute the moments of the characteristic polynomials of random orthogonal and symplectic matrices, defined by averages with respect to Haar measure on SO(2N) and USp(2N), to leading order as N → ∞, on the unit circle as functions of the angle θ measured from one of the two symmetry points in the eigenvalue spectrum . Our results extend previous formulae that relate just to the symmetry points, i.e. to θ = 0. Local spectral statistics are expected to converge to those of random unitary matrices in the limit as N → ∞ when θ is fixed, and to show a transition from the orthogonal or symplectic to the unitary forms on the scale of the mean eigenvalue spacing: if θ = π y/N they become functions of y in the limit when N → ∞. We verify that this is true for the spectral two-point correlation function, but show that it is not true for the moments of the characteristic polynomials, for which the leading order asymptotic approximation is a function of θ rather than y. Symmetry points therefore influence the moments asymptotically far away on the scale of the mean eigenvalue spacing. We also investigate the moments of the logarithms of the characteristic polynomials in the same context. The moments of the characteristic polynomials of random matrices are conjectured to be related to the moments of families of L-functions. Previously, moments at the symmetry point θ = 0 have been related to the moments of families of L-functions evaluated at the centre of the critical strip. Our results motivate general conjectures for the moments of orthogonal and symplectic families of L-functions evaluated at a fixed height t up the critical line. These conjectures suggest that the symmetry of the non-trivial zeros of the L-functions influences the moments asymptotically far, on the scale of the mean zero spacing, from the centre of the critical strip. We verify that the second moments of real quadratic Dirichlet L-functions and a family of automorphic L-functions are consistent with our conjectures. JPK is supported by an EPSRC Senior Research Fellowship. BEO was supported by an Overseas Research Scholarship and a University of Bristol Research Scholarship.  相似文献   

4.
For the unitary ensembles of N×N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2×2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an analogous role. These matrix kernels are determined by their upper left-hand entries. We derive formulas expressing these entries in terms of the scalar kernel for the corresponding unitary ensembles. We also show that whenever w/w is a rational function the entries are equal to the scalar kernel plus some extra terms whose number equals the order of w/w. General formulas are obtained for these extra terms. We do not use skew-orthogonal polynomials in the derivations  相似文献   

5.
In [49] H. Widom derived formulae expressing correlation functions of orthogonal and symplectic ensembles of random matrices in terms of orthogonal polynomials. We obtain similar results for discrete ensembles with rational discrete logarithmic derivative, and compute explicitly correlation kernels associated to the classical Meixner and Charlier orthogonal polynomials.  相似文献   

6.
The notion of Frobenius-Stickelberger-Thiele (FST) polynomials is introduced. Spectral transformations for these polynomials analogous to the Christoffel and Geronimus transformations for orthogonal polynomials are constructed. They yield an integrable discrete time chain (the FST chain) related to the generalized -algorithm. Relations of the FST polynomials to the Padé interpolation problem and to general and symmetric biorthogonal rational functions are considered in detail. This work is supported in part by the Russian Foundation for Basic Research (RFBR) grant no. 06-01-00191 and the Grant-in-Aid for Scientific Research no. 15540119 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.  相似文献   

7.
《Nuclear Physics B》1998,536(3):704-732
One object of interest in random matrix theory is a family of point ensembles (ramdom point configurations) related to various systems of classical orthogonal polynomials. The paper deals with a one-parametric deformation of these ensembles, which is defined in terms of the biorthogonal polynomials of Jacobi, Laguerre and Hermite type.Our main result is a series of explicit expressions for the correlation functions in the scaling limit (as the number of points goes to infinity). As in the classical case, the correlation functions have determinatal form. They are given by certain new kernels which are described in terms of Wright's generalized Bessel function and can be viewed as a generalization of the well-known sine and Bessel kernels.In contrast to the conventional kernels, the new kernels are non-symmetric. However, they possess other, rather surprising, symmetry properties.Our approach to finding the limit kernel also differs from the conventional one, because of lack of a simple explicit Christoffel-Darboux formula for the biorthogonal polynomials.  相似文献   

8.
Akemann, Ipsen and Kieburg recently showed that the squared singular values of products of M rectangular random matrices with independent complex Gaussian entries are distributed according to a determinantal point process with a correlation kernel that can be expressed in terms of Meijer G-functions. We show that this point process can be interpreted as a multiple orthogonal polynomial ensemble. We give integral representations for the relevant multiple orthogonal polynomials and a new double contour integral for the correlation kernel, which allows us to find its scaling limits at the origin (hard edge). The limiting kernels generalize the classical Bessel kernels. For M = 2 they coincide with the scaling limits found by Bertola, Gekhtman, and Szmigielski in the Cauchy–Laguerre two-matrix model, which indicates that these kernels represent a new universality class in random matrix theory.  相似文献   

9.
In this work, we develop an orthogonal-polynomials approach for random matrices with orthogonal or symplectic invariant laws, called one-matrix models with polynomial potential in theoretical physics, which are a generalization of Gaussian random matrices. The representation of the correlation functions in these matrix models, via the technique of quaternion determinants, makes use of matrix kernels. We get new formulas for matrix kernels, generalizing the known formulas for Gaussian random matrices, which essentially express them in terms of the reproducing kernel of the theory of orthogonal polynomials. Finally, these formulas allow us to prove the universality of the local statistics of eigenvalues, both in the bulk and at the edge of the spectrum, for matrix models with two-band quartic potential by using the asymptotics given by Bleher and Its for the corresponding orthogonal polynomials.  相似文献   

10.
We establish universality of local eigenvalue correlations in unitary random matrix ensembles near the origin of the spectrum. If V is even, and if the recurrence coefficients of the orthogonal polynomials associated with |x|2 e nV (x) have a regular limiting behavior, then it is known from work of Akemann et al., and Kanzieper and Freilikher that the local eigenvalue correlations have universal behavior described in terms of Bessel functions. We extend this to a much wider class of confining potentials V. Our approach is based on the steepest descent method of Deift and Zhou for the asymptotic analysis of Riemann-Hilbert problems. This method was used by Deift et al. to establish universality in the bulk of the spectrum. A main part of the present work is devoted to the analysis of a local Riemann-Hilbert problem near the origin. Supported by FWO research project G.0176.02 and by INTAS project 00-272 and by the Ministry of Science and Technology (MCYT) of Spain, project code BFM2001-3878-C02-02Research Assistant of the Fund for Scientific Research – Flanders (Belgium)  相似文献   

11.
We consider two families of non-Hermitian Gaussian random matrices, namely the elliptic Ginibre ensembles of asymmetric $N$ -by- $N$ matrices with Dyson index $\beta =1$ (real elements) and with $\beta =4$ (quaternion-real elements). Both ensembles have already been solved for finite $N$ using the method of skew-orthogonal polynomials, given for these particular ensembles in terms of Hermite polynomials in the complex plane. In this paper we investigate the microscopic weakly non-Hermitian large- $N$ limit of each ensemble in the vicinity of the largest or smallest real eigenvalue. Specifically, we derive the limiting matrix-kernels for each case, from which all the eigenvalue correlation functions can be determined. We call these new kernels the “interpolating” Airy kernels, since we can recover—as opposing limiting cases—not only the well-known Airy kernels for the Hermitian ensembles, but also the complementary error function and Poisson kernels for the maximally non-Hermitian ensembles at the edge of the spectrum. Together with the known interpolating Airy kernel for $\beta =2$ , which we rederive here as well, this completes the analysis of all three elliptic Ginibre ensembles in the microscopic scaling limit at the spectral edge.  相似文献   

12.
We apply the general theory of Cauchy biorthogonal polynomials developed in Bertola et al. (Commun Math Phys 287(3):983–1014, 2009) and Bertola et al. (J Approx Th 162(4):832–867, 2010) to the case associated with Laguerre measures. In particular, we obtain explicit formulae in terms of Meijer-G functions for all key objects relevant to the study of the corresponding biorthogonal polynomials and the Cauchy two-matrix model associated with them. The central theorem we prove is that a scaling limit of the correlation functions for eigenvalues near the origin exists, and is given by a new determinantal two-level random point field, the Meijer-G random field. We conjecture that this random point field leads to a novel universality class of random fields parametrized by exponents of Laguerre weights. We express the joint distributions of the smallest eigenvalues in terms of suitable Fredholm determinants and evaluate them numerically. We also show that in a suitable limit, the Meijer-G random field converges to the Bessel random field and hence the behavior of the eigenvalues of one of the two matrices converges to the one of the Laguerre ensemble.  相似文献   

13.
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.  相似文献   

14.
Questions on random matrices and non-intersecting Brownian motions have led to the study of moment matrices with regard to several weights. The main result of this paper is to show that the determinants of such moment matrices satisfy, upon adding one set of “time” deformations for each weight, the multi-component KP-hierarchy: these determinants are thus “tau-functions” for these integrable hierarchies. The tau-functions, so obtained, with appropriate shifts of the time-parameters (forward and backwards) will be expressed in terms of multiple orthogonal polynomials for these weights and their Cauchy transforms. The main result is a vast generalization of a known fact about infinitesimal deformations of orthogonal polynomials: it concerns an identity between the orthogonality of polynomials on the real line, the bilinear identity in KP theory and a generating functional for the full KP theory. An additional fact not discussed in this paper is that these τ-functions satisfy Virasoro constraints with respect to these time parameters. As one of the many examples worked out in this paper, we consider N non-intersecting Brownian motions in leaving from the origin, with n i particles forced to reach p distinct target points b i at time t  =  1; of course, . We give a PDE, in terms of the boundary points of the interval E, for the probability that the Brownian particles all pass through an interval E at time 0  <  t  <  1. It is given by the determinant of a (p + 1)  ×  (p + 1) matrix, which is nearly a wronskian. This theory is also applied to biorthogonal polynomials and orthogonal polynomials on the circle. The support of a National Science Foundation grant # DMS-07-04271 is gratefully acknowledged. The support of a National Science Foundation grant # DMS-07-04271, a European Science Foundation grant (MISGAM), a Marie Curie Grant (ENIGMA), a FNRS grant and a “Interuniversity Attraction Pole” grant is gratefully acknowledged. The support of a European Science Foundation grant (MISGAM), a Marie Curie Grant (ENIGMA) and a ANR grant (GIMP) is gratefully acknowledged.  相似文献   

15.
We calculate the unpolarized parton distribution functions up to NNLO approximation from the QCD analysis of the world DIS data. To study the proton structure functions $F_2(x,Q^2)$ , we need to use the orthogonal polynomials expansion method. This method is very useful to parameterize parton distribution function at the input of $Q_0^2$ . Our calculations for parton distribution functions based on the Jacobi polynomials method are in good agreement with the other theoretical models.  相似文献   

16.
The paper contains two main parts: in the first part, we analyze the general case of \({p \geq 2}\) matrices coupled in a chain subject to Cauchy interaction. Similarly to the Itzykson-Zuber interaction model, the eigenvalues of the Cauchy chain form a multi level determinantal point process. We first compute all correlations functions in terms of Cauchy biorthogonal polynomials and locate them as specific entries of a \({(p+1) \times (p+1)}\) matrix valued solution of a Riemann–Hilbert problem. In the second part, we fix the external potentials as classical Laguerre weights. We then derive strong asymptotics for the Cauchy biorthogonal polynomials when the support of the equilibrium measures contains the origin. As a result, we obtain a new family of universality classes for multi-level random determinantal point fields, which include the Bessel\({_{\nu}}\) universality for 1-level and the Meijer-G universality for 2-level. Our analysis uses the Deift-Zhou nonlinear steepest descent method and the explicit construction of a \({(p+1) \times (p+1)}\) origin parametrix in terms of Meijer G-functions. The solution of the full Riemann–Hilbert problem is derived rigorously only for p = 3 but the general framework of the proof can be extended to the Cauchy chain of arbitrary length p.  相似文献   

17.
The dispersionless Toda hierarchy turns out to lie in the heart of a recently proposed Landau-Ginzburg formulation of two-dimensional string theory at self-dual compactification radius. The dynamics of massless tachyons with discrete momenta is shown to be encoded into the structure of a special solution of this integrable hierarchy. This solution is obtained by solving a Riemann-Hilbert problem. Equivalence to the tachyon dynamics is proven by deriving recursion relations of tachyon correlation functions in the machinery of the dispersionless Toda hierarchy. Fundamental ingredients of the Landau-Ginzburg formulation, such as Landau-Ginzburg potentials and tachyon Landau-Ginzburg fields, are translated into the language of the Lax formalism. Furthermore, a wedge algebra is pointed out to exist behind the Riemann-Hilbert problem, and speculations on its possible role as generators of extra states and fields are presented.  相似文献   

18.
In our previous paper (Allendes et al., 2013 [10]), we showed that multi-fold Mellin–Barnes (MB) transforms of Usyukina–Davydychev (UD) functions may be reduced to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms of ratios of squares of the external momenta with certain coefficients. We also showed that these coefficients have a combinatoric origin. In this paper, we present an explicit formula for these coefficients. The procedure of recovering the coefficients is based on taking the double-uniform limit in certain series of smooth functions of two variables which is constructed according to a pre-determined iterative way. The result is obtained by using basic methods of mathematical analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions should reflect itself in other mathematical constructions, too, since it is not related in any way to the explicit form of the MB transforms. This finite double-uniform limit is represented in terms of a differential operator with respect to an auxiliary parameter which acts on the integrand of a certain two-fold MB integral. To demonstrate that our result is compatible with original representations of UD functions, we reproduce the integrands of these original integral representations by applying this differential operator to the integrand of the simple integral representation of the scalar triangle four-dimensional integral J(1,1,1−ε)J(1,1,1ε).  相似文献   

19.
The usual formulas for the correlation functions in orthogonal and symplectic matrix models express them as quaternion determinants. From this representation one can deduce formulas for spacing probabilities in terms of Fredholm determinants of matrix-valued kernels. The derivations of the various formulas are somewhat involved. In this article we present a direct approach which leads immediately to scalar kernels for the unitary ensembles and matrix kernels for the orthogonal and symplectic ensembles, and the representations of the correlation functions, cluster functions, and spacing distributions in terms of them.  相似文献   

20.
We consider unitary random matrix ensembles on the space of Hermitian n × n matrices M, where the confining potential V s,t is such that the limiting mean density of eigenvalues (as n→∞ and s,t→ 0) vanishes like a power 5/2 at a (singular) endpoint of its support. The main purpose of this paper is to prove universality of the eigenvalue correlation kernel in a double scaling limit. The limiting kernel is built out of functions associated with a special solution of the P I 2 equation, which is a fourth order analogue of the Painlevé I equation. In order to prove our result, we use the well-known connection between the eigenvalue correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest descent method to analyze the RH problem asymptotically. The key step in the asymptotic analysis will be the construction of a parametrix near the singular endpoint, for which we use the model RH problem for the special solution of the P I 2 equation. In addition, the RH method allows us to determine the asymptotics (in a double scaling limit) of the recurrence coefficients of the orthogonal polynomials with respect to the varying weights on . The special solution of the P I 2 equation pops up in the n −2/7-term of the asymptotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号