首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. [Part B]》1988,212(2):187-190
We present an action which generates the supersymmetric self-dual equations corresponding to euclidean super Yang-Mills theory in four dimensions. By adding additional constraint fields with new local symmetries, the classical equations of this system are the usual super self-dual equations when a gauge is chosen for the constraint fields. This construction is a supersymmetric generalization of the Labastida-Pernici action which corresponds to a gauge unfixed version of Witten's topological quantum field theory. We discuss some topological prospects for this model, and the role of supersymmetric instantons in Donaldson theory.  相似文献   

2.
We present a stochastic theory for the nonequilibriurn dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action, which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle’s worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.  相似文献   

3.
Dirac's extended electron model is elaborated here both on the classical and quantum level. The classical equations of motion are deduced from Dirac's action principle. It is shown that the model is free of the troublesome runaway solutions in the classical theory. The quantum theory of the radial oscillations is worked out in detail and the spectrum is discussed. The stability of the model is studied and it is found that Dirac's extended electron is unstable against quadrupole deformations.  相似文献   

4.
We have developed a novel technique that enables measurements of the breakdown of both the integer and fractional quantum Hall effects in a two-dimensional electron system without the need to contact the sample. The critical Hall electric fields that we measure are significantly higher than those reported by other workers, and support the quasi-elastic inter-Landau-level tunnelling model of breakdown. Comparison of the fractional quantum Hall effect results with those obtained on the integer quantum Hall effect allows the fractional quantum Hall effect energy gap to be determined and provides a test of the composite-fermion theory. The temperature dependence of the critical current gives an insight into the mechanism by which momentum may be conserved during the breakdown process.  相似文献   

5.
We consider the cosmological symmetry reduction of the Plebanski action as a toy-model to explore, in this simple framework, some issues related to loop quantum gravity and spin-foam models. We make the classical analysis of the model and perform both path integral and canonical quantizations. As for the full theory, the reduced model admits two disjoint types of classical solutions: topological and gravitational ones. The quantization mixes these two solutions, which prevents the model from being equivalent to standard quantum cosmology. Furthermore, the topological solution dominates at the classical limit. We also study the effect of an Immirzi parameter in the model.  相似文献   

6.
For a model of an open quantum system—a concentrated ensemble consisting of similar atoms and interacting with a one-dimensional quantum vacuum environment with a zero photon density—quantum stochastic differential equations of a non-Wiener type of the general form have been obtained; based on the equations, kinetic equations describing a wide class of physical systems are derived. The distinctive feature of such systems is effects of suppression of collective spontaneous emission and stabilization of the excited state. For the open classical system exposed to the action of noise in the form of a Levy process of the general non-Gaussian kind, kinetic equations of the Fokker-Planck type with fractional derivatives have been obtained based on classical non-Wiener stochastic differential equations. This emphasizes the common base of the developed theory for different types of open systems, which is expressed in using the mathematical formalism of stochastic differential equations of the general non-Wiener type.  相似文献   

7.
We study the classical and quantum models of a Friedmann-Robertson-Walker (FRW) cosmology in the framework of the gravity theory proposed by Ho?ava, the so-called Ho?ava–Lifshitz theory of gravity. Beginning with the ADM representation of the action corresponding to this model, we construct the Lagrangian in terms of the minisuperspace variables and show that in comparison with the usual Einstein-Hilbert gravity, there are some correction terms coming from the Ho?ava theory. Either in the matter free or in the case when the considered universe is filled with a perfect fluid, the exact solutions to the classical field equations are obtained for the flat, closed and open FRW model and some discussions about their possible singularities are presented. We then deal with the quantization of the model in the context of the Wheeler–DeWitt approach of quantum cosmology to find the cosmological wave function. We use the resulting wave functions to investigate the possibility of the avoidance of classical singularities due to quantum effects.  相似文献   

8.
We have investigated gapless edge states in zigzag-edge graphene nanoribbons under a transverse electric field across the opposite edges by using a tight-binding model and the density functional theory calculations. The tight-binding model predicted that a quantum valley Hall effect occurs at the vacuum-nanoribbon interface under a transverse electric field and, in the presence of edge potentials with opposite signs on opposite edges, an additional quantum valley Hall effect occurs under a much lower field. Dangling bonds inevitable at the edges of real nanoribbons, functional groups terminating the edge dangling bonds, and spin polarizations at the edges result in the edge potentials. The density functional theory calculations confirmed that asymmetric edge terminations, such as one having hydrogen at an edge and fluorine at the other edge, lead to the quantum valley Hall effect even in the absence of a transverse electric field. The electric field-induced half-metallicity in the antiferromagnetic phase, which has been intensively investigated in the last decade, was revealed to originate from a half-metallic quantum valley Hall effect.  相似文献   

9.
We continue the study of similarities between quantum information theory and theory of classical Gaussian signals. The possibility of using quantum entropy for classical Gaussian signals was explored a long time ago. Recently we demonstrated that some basic quantum channels can be represented as linear transforms of classical Gaussian signals. Here we consider bipartite quantum systems and show that an important quantum channel given by the partial trace operation has a simple classical representation, namely, a coordinate projection of a classical “prequantum signal.” We also consider the classical signal realization of quantum channels corresponding to state transforms in the process of measurement. The latter induces a difficult interpretational problem — the output signal corresponding to one system depends on a measurement that has been done on the second system. This situation might be interpreted as a sign of quantum nonlocality, action at a distance. Although we do not exclude such a possibility, i.e., that, in complete accordance with Bell, the creation of a realistic prequantum model is impossible without action at a distance, we found another interpretation of this situation that is not related to quantum nonlocality.  相似文献   

10.
赵博  陈增兵 《中国物理》2005,14(2):378-381
研究了原子霍尔效应中复合粒子描述方法,并进一步给出Chern-Simon-Gross-Pitaevskii(CSGP)有效场描述。研究结果表明从平均场和复合粒子的角度来看原子霍尔效应和电子霍尔效应是一致的。  相似文献   

11.
12.
This paper uses techniques in noncommutative geometry as developed by Alain Connes [Co2], in order to study the twisted higher index theory of elliptic operators on orbifold covering spaces of compact good orbifolds, which are invariant under a projective action of the orbifold fundamental group, continuing our earlier work [MM]. We also compute the range of the higher cyclic traces on K-theory for cocompact Fuchsian groups, which is then applied to determine the range of values of the Connes–Kubo Hall conductance in the discrete model of the quantum Hall effect on the hyperbolic plane, generalizing earlier results in [Bel+E+S], [CHMM]. The new phenomenon that we observe in our case is that the Connes–Kubo Hall conductance has plateaux at integral multiples of a fractional valued topological invariant, namely the orbifold Euler characteristic. Moreover the set of possible fractions has been determined, and is compared with recently available experimental data. It is plausible that this might shed some light on the mathematical mechanism responsible for fractional quantum numbers. Received: 4 November 1999 / Accepted: 22 September 2000  相似文献   

13.
14.
We report on theoretical and experimental investigations of a novel hysteresis effect that has been observed on the magnetoresistance of quantum Hall bilayer systems. Extending to these system a recent approach, based on the Thomas–Fermi–Poisson nonlinear screening theory and a local conductivity model, we are able to explain the hysteresis as being due to screening effects such as the formation of “incompressible strips”, which hinder the electron density in a layer within the quantum Hall regime to reach its equilibrium distribution.  相似文献   

15.
We study noncommutative Chern-Simons mechanics and noncommutative Hall effect by Dirac theory in this paper. The magnetic field is introduced by means of minimal coupling. We show that the constraint set will enlarge when a dimensionless parameter takes zero value. In order to illustrate our idea, we study two specific models. One is noncommutative Chern-Simons mechanics which describes a charged particle on a noncommutative plane interacting with a perpendicular uniform magnetic field. The other is a charged particle on a noncommutative plane with a background uniform electromagnetic field. We show that when the dimensionless parameter tends to zero, the particle will live in a lower dimensional space in both models. Noncommutative Chern-Simons mechanics will reduce to a harmonic oscillator and the classical equations of motion of a charged particle in the background of a uniform electromagnetic field are governed by classical Hall law when the dimensionless parameter tends to zero.  相似文献   

16.
A great effort has been devoted to formulating a classical relativistic theory of spin compatible with quantum relativistic wave equations. The main difficulty in connecting classical and quantum theories rests in finding a parameter that plays the role of proper time at a purely quantum level. We present a partial review of several proposals of classical and quantum spin theories from the pioneering works of Thomas and Frenkel, revisited in the classical BMT work, to the semiclassical model of Barut and Zanghi. We show that the last model can be obtained from a semiclassical limit of the Feynman proper time parametrization of the Dirac equation. At the quantum level, we derive spin precession equations in the Heisenberg picture. Analogies and differences with respect to classical theories are discussed in detail.  相似文献   

17.
The path-integral approach to quantum field theory assigns special importance to finite action Euclidean solutions of classical field equations. In Yang-Mills gauge theories, the instanton solutions of classical field equations with self-dual field strength have given rise to a new, nonperturbative treatment of the quantum field theory and its vacuum state. Since gravitation is also a species of gauge theory, one might think that similar phenomena would occur in gravity. The authors recently sought and found a new self-dual solution to Euclidean gravity which plays a role parallel to that of the Yang-Mills instanton. Gravitational instantons now promise to yield new insights into the nature of quantum gravity.This essay received the second award from the Gravity Research Foundation for the year 1979-Ed.  相似文献   

18.
In this paper a quantum N = 4 super Yang-Mills theory perturbed by dilaton-coupled scalars and spinor fields, is considered. The induced effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via the AdS/CFT correspondence. Considering such an effective action (using the large N method) as a quantum correction to the classical gravity action with cosmological constant, we study the effect from the dilaton on the scale factor (this corresponds to an inflationary universe without dilaton). It is shown that, depending on the initial conditions for the dilaton, the dilaton may slow down, or accelerate, the inflation process. At late times, the dilaton is decaying exponentially. Different possible cases corresponding to a dilatonic dS Universe are analyzed with respect to the equations of motion.  相似文献   

19.
The non-equilibrium processes of quark-gluon-plasma (QGP) in the coexistent phase of first order phase transition are studied under Lee's model. Both the classical and the quantum transport equations of quark as well as the corresponding hydrodynamical equations are obtained. The classical transport equations are deduced from the quantum ones in the semiclassical limit, showing that the theory is self-consistent. The transport equations of gluon in the semi-classical limit and the equation for the fluctuation of gluon distribution function under the condition of near-equilibrium are also derived.  相似文献   

20.
In this work we investigate an unusual transport phenomenon observed in two-dimensional electron gas under integer quantum Hall effect conditions. Our calculations are based on the screening theory, using a semi-analytical model. The transport anomalies are dip and overshoot effects, where the Hall resistance decreases (or increases) unexpectedly at the quantized resistance plateaus intervals. We report on our numerical findings of the dip effect in the Hall resistance, considering GaAs/AlGaAs heterostructures in which we investigated the effect under different experimental conditions. We show that, similar to overshoot, the amplitude of the dip effect is strongly influenced by the edge reconstruction due to electrostatics. It is observed that the steep potential variation close to the physical boundaries of the sample results in narrower incompressible strips, hence, the experimental observation of the dip effect is limited by the properties of these current carrying strips. By performing standard Hall resistance measurements on gate defined narrow samples, we demonstrate that the predictions of the screening theory is in well agreement with our experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号