首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, Pruett et al. [Pruett, C.D., Gatski, T.B., Grosch, C.E., Thacker, W.D., 2003. The temporally filtered Navier–Stokes equations: properties of the residual stress. Phys. Fluids 15, 2127–2140] proposed an approach to large-eddy simulation (LES) based on time-domain filtering; their approach was termed temporal large-eddy simulation or TLES. In a continuation of their work, Pruett and collaborators tested their methodology by successfully performing TLES of unstratified turbulent channel flow up to Reynolds number of 590 (based on channel half-height and friction velocity) [Pruett, C.D., Thomas, B.C., Grosch, C.E., Gatski, T.B., 2006. A temporal approximate deconvolution model for LES. Phys. Fluids 18, 028104, 4p]. Here, we carefully analyze the TLES methodology in order to understand the role of its key components and in the process compare TLES to more traditional approaches of spatial LES. Furthermore, we extend the methodology to stably stratified turbulent channel flow.  相似文献   

2.
A hybrid method combining large eddy simulation (LES) with the Reynolds-averaged Navier-Stokes (RANS) equation is used to simulate a turbulent channel flow at high Reynolds number. It is known that the mean velocity profile has a mismatch between the RANS and LES regions in hybrid simulations of a channel flow. The velocity mismatch is reproduced and its dependence on the location of the RANS/LES interface and on the type of RANS model is examined in order to better understand its properties. To remove the mismatch and to obtain better velocity profiles, additional filtering is applied to the velocity components in the wall-parallel planes near the interface. The additional filtering was previously introduced to simulate a channel flow at low Reynolds number. It is shown that the filtering is effective in reducing the mismatch even at high Reynolds number. Profiles of the velocity fluctuations of runs with and without the additional filtering are examined to help understand the reason for the mismatch. Due to the additional filtering, the wall-normal velocity fluctuation increases at the bottom of the LES region. The resulting velocity field creates the grid-scale shear stress more efficiently, and an overestimate of the velocity gradient is removed. The dependence of the velocity profile on the grid point number is also investigated. It is found that the velocity gradient in the core region is underestimated in the case of a coarse grid. Attention should be paid not only to the velocity mismatch near the interface but also to the velocity profile in the core region in hybrid simulations of a channel flow at high Reynolds number. PACS47.27.Eq; 47.27.Nz; 47.60.+i  相似文献   

3.
The paper aims to assess the performance of large eddy simulation (LES) in predicting the unsteady reacting flows in internal combustion engines. The incompatibility due to the turbulence dissipation was avoided in the k-equation LES formulation. Two versions of the LES have been tested with different filtering. The cell-specific filtering was found to give realistic prediction of the instantaneous temperature and pressure field during the combustion process. The coupling of combustion heat release, temperature field and turbulent flow field was found to be strong in the LES predicted flow and combustion fields which showed wrinkled flame structures. The formulation gives improved agreement with available experimental data.  相似文献   

4.
将大涡模拟(LES)和无网格的移动粒子半隐式法(MPS)相结合, 以求解湍流中的自由表面问题. 对N-S方程进行滤波计算可得到大涡模拟的控制方程, 大涡模拟的控制方程相对于以往的移动粒子半隐式法而言仅多出雷诺应力项, 通过亚粒子应力(sub-particle-scale,SPS)模型并引入Smagorinsky涡黏模型将雷诺应力模型化, 可实现移动粒子半隐式法的大涡模拟. 将MPS-LES应用至具有大变形自由表面的共振晃荡中, 其模拟结果同实验及其他数值模拟结果都相当接近.   相似文献   

5.
Hybrid approach combining large eddy simulation (LES) with the Reynolds-averaged Navier–Stokes equation (RANS) is expected to accurately simulate wall-bounded turbulent flows at high Reynolds numbers. As an important issue in developing hybrid methods, it is known that the log layers in the RANS and LES regions are not lined up in hybrid RANS/LES simulations of channel flow. Although several methods including additional filtering near the RANS/LES interface have been proposed to eliminate the log-layer mismatch, there is no obvious physical justification for the methods and some ad hoc tuning is necessary. In this work, the commutation error terms in the filtered velocity equations are investigated to justify the method of additional filtering. It is shown that the additional filtering can be considered as a finite difference approximation to extra terms due to the non-commutivity between the hybrid filter and the spatial derivative. Moreover, an expression determining the filter width and its location for the additional filtering is obtained. To validate the expression, a hybrid simulation of channel flow is carried out. The additional filtering with the filter width derived is shown to be effective in eliminating the log-layer mismatch and improving the mean velocity profile.  相似文献   

6.
Flows around buildings and in urban areas have the ability to exchange mass and momentum through mixing layers. The complex dynamical phenomena arising in mixing layers can be studied using Large Eddy Simulation (LES). As mixing layers depend on the turbulence conditions upstream of the buildings or urban areas, appropriate turbulent inlet conditions have to be provided to a simulation. Due to the high efficiency and level of control, the filtered noise inflow method was selected. The control over the Reynolds stresses as well as nine length scales make this method suitable to replicate conditions measured in experiments. In this paper, a formal method to obtain the filter coefficients is presented. This is achieved by relating the spatial filtering to a Finite Impulse Response (FIR) filter and the temporal filtering to an Autoregressive (AR) model. Three closed-form solutions for the spatial filter coefficients are presented having a Gaussian, double-exponential and exponential correlation function. By means of an LES simulation of a turbulent wall-bounded flow, the input-output behaviour is investigated. It was found that a combination of a Gaussian filter with length scales that increase with increasing wall distance result in the fastest downstream development of the artificial turbulence and the smallest loss of turbulent kinetic energy.  相似文献   

7.
Based on a priori tests, in large eddy simulation (LES) of turbulent fluid flow, the numerical error related to low‐order finite‐difference‐type methods can be large in comparison with the effect of subgrid‐scale (SGS) model. Explicit filtering has been suggested to reduce the error, and it has shown promising results in a priori studies and in some simulations with fourth‐order method. In this paper, the effect of explicit filtering on the total simulation error is studied together with a second‐order scheme, where the numerical error should be even larger. The fully developed turbulent channel flow between two parallel walls is used as a test case. Rather simple SGS models are applied, because these models are most likely used in practical applications of LES. Explicit filtering is here applied to the non‐linear convection term of the Navier–Stokes equations, four three‐dimensional filter functions are applied, and the effect of filtering is separated from the effect of SGS modelling. It is shown that the effect of filtering is rather large and smooth filters introduce an additional error component that increases the total simulation error. Finally, filtering via subfilter‐scale modelling is applied, and it is shown that this approach performs better. However, the large‐frequency components of the resolved flow field are not as effectively damped as when the non‐linear convection term is filtered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The dynamic model for large-eddy simulation (LES) of turbulent flows requires test filtering the resolved velocity fields in order to determine model coefficients. However, test filtering is costly to perform in LES of complex geometry flows, especially on unstructured grids. The objective of this work is to develop and test an approximate but less costly dynamic procedure which does not require test filtering. The proposed method is based on Taylor series expansions of the resolved velocity fields. Accuracy is governed by the derivative schemes used in the calculation and the number of terms considered in the approximation to the test filtering operator. The expansion is developed up to fourth order, and results are tested a priori based on direct numerical simulation data of forced isotropic turbulence in the context of the dynamic Smagorinsky model. The tests compare the dynamic Smagorinsky coefficient obtained from filtering with those obtained from application of the Taylor series expansion. They show that the expansion up to second order provides a reasonable approximation to the true dynamic coefficient (with errors on the order of about 5% for c s 2), but that including higher-order terms does not necessarily lead to improvements in the results due to inherent limitations in accurately evaluating high-order derivatives. A posteriori tests using the Taylor series approximation in LES of forced isotropic turbulence and channel flow confirm that the Taylor series approximation yields accurate results for the dynamic coefficient. Moreover, the simulations are stable and yield accurate resolved velocity statistics. Received 20 February 2001 and accepted 24 July 2001  相似文献   

9.
Flow interaction with a bluff body generates a highly complex flow field and has been the subject of much experimental and theoretical analysis. It has been shown that large eddy simulation (LES) modelling provides a more realistic analysis of the flow for such situations where the large scales of turbulence must be resolved. The inherent small-scale spatial velocity averaging in particle image velocimetry (PIV) is commensurate with the sub-grid scale modelling of LES and, therefore, offers potential as a code refinement technique. To demonstrate this potential, however, PIV must be performed with a temporal resolution of typically kHz and a spatial resolution of sub-mm2 to be relevant for the vast majority of flows of engineering interest. This paper reports the development of a high-speed PIV system capable of operating at 20 kHz with a spatial resolution of 0.9 mm2. This is the combined highest speed, highest resolution PIV data reported to date. The experiment chosen to demonstrate the system is the study of the steady flow interaction with circular and square cross-section obstacles. A Reynolds number of 3,900 is chosen for the cylinder flow to extend the database used by Breuer M. (1998 Int J Heat Fluid 19:512–521) in his extensive LES modelling of this flow. Data presented include a sequence of two-dimensional velocity and vorticity fields, including flow streamlines. Importantly, the random error, inherent in a PIV measurement, is discussed and a formula presented which allows the error to be estimated and regions of the flow identified where LES comparisons would be uncertain.  相似文献   

10.
While methods for assessing the uncertainty of Reynolds–Averaged–Navier–Stokes (RANS) simulations have been well established in the past, the verification of Large Eddy Simulations (LES) is more difficult. One reason is that the numerical discretization error as well as the subgrid scale model contribution depend on the grid resolution and that both terms interact. In the present paper the accuracy of single-grid estimators to assess the amount of the unresolved turbulent kinetic energy is studied first. In the second part of the paper the sensitivity of the simulation results on the modeling error as well as the numerical error will be investigated in the context of LES with implicit filtering. This will be achieved by performing a systematic grid and model variation. The analysis is applied to an isothermal, turbulent, plane jet and a turbulent channel flow.  相似文献   

11.
The quantification of the prediction accuracy in large eddy simulations (LES) is very challenging due to various interacting errors associated with this approach. When dealing with errors in LES using implicit filtering, numerical and modeling errors have drawn the interest of many researchers. Little attention has been paid to other sources of discrepancies between LES results and reference data, namely sampling errors, influence of the initial conditions, improper boundary conditions or uncertainties issuing from reference data. A framework of metrics that includes all these issues is addressed in the present paper to study subgrid-scale (SGS) models for LES and to quantify their prediction accuracy and computational costs. The method is applied to a simple wall-bounded turbulent flow at moderate Reynolds number. It turns out from the results obtained with six commonly used SGS models that wall-adapting models (WALE and SIGMA) and localized dynamic models reproduce the physics of the flow field more faithfully, reveal a superior prediction accuracy and have a similar computational cost than models using van Driest wall damping. Especially at the viscous wall region (\(r^+<50\)), wall-adapting and localized dynamic models are more accurate, reflecting the proper near wall behavior of such models. Relying on the analysis of sources of various errors, uncertainties in LES are estimated and systematically assessed, and their influence on simulation results is quantified. Finally, engineering estimations of the required averaging time to obtain basic estimates of statistical quantities with a predetermined degree of accuracy are suggested.  相似文献   

12.
The influence of mesh motion on the quality of large eddy simulation (LES) was studied in the present article. A three‐dimensional, turbulent pipe flow (Reτ=360) was considered as a test case. Simulations with both stretching and static meshes were carried out in order to understand how mesh motion affects the turbulence statistics. The spatial filtering of static and moving mesh direct numerical simulation (DNS) data showed how an ideal LES would perform, while the comparison of DNS cases with static and moving meshes revealed that no significant numerical errors arise from the mesh motion when the simulation is fully resolved. The comparison of the filtered fields of the DNS with a moving mesh with the corresponding LES fields revealed different responses to mesh motion from different numerical approaches. A straightforward test was applied in order to verify that the moving mesh works consistently in LES: when the mesh is stretched in the streamwise direction, the moving mesh results should be in between the two extremal resolutions between which the mesh is stretched. Numerical investigations using four different LES approaches were carried out. In addition to the Smagorinsky model, three implicit LES approaches were used: linear interpolation (non‐dissipative), the Gamma limiter (dissipative), and the scale‐selective discretisation (slightly dissipative). The results indicate that while the Smagorinsky and the scale‐selective discretisation approaches produce results consistent with the resolution of the non‐static mesh, the implicit LES with linear interpolation or the Gamma scheme do not. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Fuel efficiency improvement and harmful emission reduction are the paramount driving forces for development of gas turbine combustors. Lean-burn combustors can accomplish these goals, but require specific flow topologies to overcome their sensitivity to combustion instabilities. Large Eddy Simulations (LES) can accurately capture these complex and intrinsically unsteady flow fields, but estimating the appropriate numerical resolution and subgrid model(s) still remain challenges. This paper discusses the prediction of non-reacting flow fields in the DLR gas turbine model combustor using LES. Several important features of modern gas turbine combustors are present in this model combustor: multiple air swirlers and recirculation zones for flame stabilisation. Good overall agreement is obtained between LES outcomes and experimental results, both in terms of time-averaged and temporal RMS values. Findings of this study include a strong dependence of the opening angle of the swirling jet inside the combustion chamber on the subgrid viscosity, which acts mainly through the air mass flow split between the two swirlers in the DLR model combustor. This paper illustrates the ability of LES to obtain accurate flow field predictions in complex gas turbine combustors making use of open-source software and computational resources available to industry.  相似文献   

14.
Large eddy simulations (LES) of turbulent temporal shear layers with hydrogen chemistry are performed. In these simulations, approximate deconvolution is applied as an implicit subgrid-scale modeling approach to a reacting flow in combination with a steady flamelet model for the filtered heat release term. No additional heuristical or physical subgrid models are used. The formulation of the flamelet equations in physical space does not only allow to consider a detailed reaction scheme and the extinguished phase but also to take into account detailed diffusion mechanisms (Soret and Dufour effects, multicomponent diffusion coefficients). Two different levels of diffusion approximations are investigated in this work, the aim of which is twofold: Firstly, to verify approximate deconvolution as a tool for convective transport of mass, momentum and energy in gas flow, by comparing the LES results with those of a direct numerical simulation and secondly, to investigate the influence of detailed diffusion on the laminar flamelets and the LES results.  相似文献   

15.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

16.
One commonly-used method for deriving the RANS equations for multicomponent flow is the technique of conditional averaging. In this paper the concept is extended to LES, by introducing the operations of conditional filtering and surface filtering. Properties of the filtered indicator function are investigated mathematically and computationally. These techniques are then used to derive conditionally filtered versions of the Navier–Stokes equations which are appropriate for simulating multicomponent flow in LES. Transport equations for the favre-averaged indicator function and the unresolved interface properties (the wrinkling and the surface area per unit volume) are also derived. Since the paper is directed towards modelling premixed combustion in the flamelet regime, closure of the equations is achieved by introducing physical models based on the picture of the flame as a wrinkled surface separating burnt and unburnt components of the fluid. This leads to a set of models for premixed turbulent combustion of varying complexity. The results of applying one of this set of models to propagation of a spherical flame in isotropic homogeneous turbulence are analysed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
With the development of computational power, large eddy simulation (LES) method is increasingly used in simulating complex flow. However, there still exist many factors affecting the LES quality and appropriate mesh resolution is among one of them. This work aims to develop an automatic procedure to refine the LES mesh by combining adaptive mesh refinement (AMR) and LES quality criteria. An LES refinement criterion is developed by estimating the proper grid length scale which meets the accuracy requirement of LES method. With this criterion, the baseline mesh is automatically refined with the AMR method. In this work, an efficient one-shot refinement strategy is also proposed to reduce the overall simulation time. Current AMR-based LES method is verified with the typical LES test case about the flow past circular cylinder at Re D = 3900. Results show that the automatically refined mesh provides systematically better agreement with experimental results and with current method the balance between accuracy and computational expense for LES can be obtained.  相似文献   

18.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

19.
Numerous comparisons between Reynolds‐averaged Navier–Stokes (RANS) and large‐eddy simulation (LES) modeling have already been performed for a large variety of turbulent flows in the context of fully deterministic flows, that is, with fixed flow and model parameters. More recently, RANS and LES have been separately assessed in conjunction with stochastic flow and/or model parameters. The present paper performs a comparison of the RANS k ? ε model and the LES dynamic Smagorinsky model for turbulent flow in a pipe geometry subject to uncertain inflow conditions. The influence of the experimental uncertainties on the computed flow is analyzed using a non‐intrusive polynomial chaos approach for two flow configurations (with or without swirl). Measured quantities including an estimation of the measurement error are then compared with the statistical representation (mean value and variance) of their RANS and LES numerical approximations in order to check whether experiment/simulation discrepancies can be explained within the uncertainty inherent to the studied configuration. The statistics of the RANS prediction are found in poor agreement with experimental results when the flow is characterized by a strong swirl, whereas the computationally more expensive LES prediction remains statistically well inside the measurement intervals for the key flow quantities.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A Large Eddy Simulation (LES) of turbulent flow over an airfoil near stall is performed. Results of the LES are compared with those of Reynolds-Averaged Navier-Stokes (RANS) simulations using two well-known turbulence models, namely the Baldwin-Lomax model and the Spalart-Allmaras model. The subgrid scale model used for the LES is the filtered structure function model. All simulations are performed using the same structured multi-block code. In order to reduce the CPU time, an implicit time stepping method is used for the LES. The purpose of this study is to show the possibilities and limitations of LES of complex flows associated with aeronautical applications using state of the art simulation techniques. Typical flow features are captured by the LES such as the adverse-pressure gradient and flow retardation. Visualization of instantaneous flow fields shows the typical streaky structures in the near-wall region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号