首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A capillary zone electrophoresis method was developed for the enantioseparation of celiprolol enantiomers, using a sulfated beta-cyclodextrin (beta-CD) as a chiral selector. The use of a coated capillary was necessary to achieve stable and reproducible enantioseparations. A central composite design was applied to optimize the method and four parameters were selected for this study: the buffer pH, the buffer concentration, the sulfated beta-CD concentration and the temperature. Resolution between celiprolol enantiomers as well as analysis time and generated current were established as responses. For each response, a model was obtained by a second-degree mathematical expression. From the models, the most favorable conditions were determined by optimizing the resolution between celiprolol enantiomers and by setting the two other responses at threshold values. Response surfaces were also used to assess the robustness of the analytical method around the optimal region. Successful results were obtained with a 52 mM acetate buffer at pH 4.0 in the presence of 3.0 mM sulfated beta-CD at a temperature of 19.5 degrees C. Under these optimized conditions, baseline separation of the celiprolol enantiomers was achieved in less than 10 min. The method showed good validation data in terms of precision, accuracy and linearity, and was found to be suitable in determining celiprolol enantiomers in pharmaceutical preparations and in biological fluids.  相似文献   

2.
A sulfated beta-cyclodextrin (sulfated beta-CD)-mediated capillary electrophoresis method is described for the enantioseparation of cetirizine using achiral cefazolin as an internal standard. The enantioseparation of the drug was performed in a borate buffer (5 mM, pH 8.7) with 1% sulfated beta-CD (w/v) as chiral selector at 10 kV. Several parameters affecting the separation were studied, including the pH and the concentration of borate buffer and chiral selector. Under optimized conditions, a baseline separation of two enantiomers was achieved in less than 7 min. Using cefazolin as an internal standard (IS), the linear range of the method for the determination of levocetirizine was over 1.0 to 50.0 microg/mL; the detection limit (signal-to-noise ratio = 3) of levocetirizine was 0.5 microg/mL. The method allowed the enantioseparation of cetirizine in bulk samples and enantiomeric purity evaluation of levocetirizine (R-enantiomer) in pharmaceutical tablets (Xyzal), and it was also found to be suitable for enantioseparation in human plasma.  相似文献   

3.
Electrokinetic chromatography with cyclodextrin derivatives (CD-EKC) was used to achieve the rapid enantiomeric separation of chiral polychlorinated biphenyls (PCBs). Thirteen of the 19 chiral PCBs stable at room temperature were individually separated into their two enantiomers by using 2-morpholinoethanesulfonic acid (MES) buffer (pH 6.5) containing carboxymethylated gamma-cyclodextrin (CM-gamma-CD) as pseudostationary phase mixed with beta-cyclodextrin (beta-CD) or permethylated beta-cyclodextrin (PM-beta-CD). Urea was also added to increase the solubility of PCBs and cyclodextrins in the aqueous separation buffer. Several experimental parameters such as the nature, concentration, and pH of the buffer, nature and concentration of the cyclodextrin derivatives used, and the addition of different additives were studied in order to improve the enantiomeric separation. In addition, the effect of some instrumental parameters such as separation temperature and applied voltage was also investigated. PCBs were enantiomerically separated in less than 12 min by using a 50 mM MES buffer (pH 6.5) containing 20 mM CM-gamma-CD, 10 mM beta-CD or 20 mM PM-beta-CD, and 2 M urea at a temperature of 45 degrees C and an applied voltage of 20 kV.  相似文献   

4.
Micellar electrokinetic chromatography (MEKC) was successfully and conveniently applied to the chiral separation with the addition of cyclodextrins (CDs) as chiral selector to the running buffer. Chiral separation depended on the type of CD; in particular, beta-CD was effective for the chiral separation of racemorphan. We investigated the optimal conditions of type and concentration of CD as chiral selector for the routine enantiomeric separation of racemorphan with good reproducibility. The effects of other parameters such as buffer pH and detection wavelength were also investigated to obtain the optimum conditions for the enantiomeric separation of racemorphan. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for confirmation of racemorphan. The optimal conditions for enantiomeric separation of the racemorphan were as follows: 50 mM borate buffer at pH 9.4 with 50 mM SDS, 10 mM beta-CD and 20% 1-propanol, 57 cm x 50 microns fused-silica capillary column, and UV detection at 192 nm. Based on the developed method, racemorphan in human urine was also separated and determined using solid-phase extraction and MEKC.  相似文献   

5.
A simple and fast capillary electrophoretic method has been developed for the enantioselective separation of citalopram and its main metabolites, namely N-desmethylcitalopram and N,N-didesmethylcitalopram, using beta-cyclodextrin (beta-CD) sulfate as the chiral selector. For method optimisation several parameters were investigated, such as CD and buffer concentration, buffer pH, and capillary temperature. Baseline enantioseparation of the racemic compounds was achieved in less than 6 min using a fused-silica capillary, filled with a background electrolyte consisting of a 35 mM phosphate buffer at pH 2.5 supplemented with 1% w/v beta-CD sulfate and 0.05% w/v beta-CD at 25 degrees C and applying a voltage of -20 kV. A fast separation method for citalopram was also optimized and applied to the analysis of pharmaceutical formulations. Racemic citalopram was resolved in its enantiomers in less than 1.5 min using short-end injection (8.5 cm, effective length) running the experiments in a background electrolyte composed of a 25 mM citrate buffer at pH 5.5 and 0.04% w/v beta-CD sulfate at a temperature of 10 degrees C.  相似文献   

6.
Wu YS  Lee HK  Li SF 《Electrophoresis》2000,21(8):1611-1619
Enantiomeric separation of two triazole fungicides, triadimefon and triadimenol, was investigated in sulfated beta-cyclodextrin (sulfated beta-CD)-mediated capillary electrophoresis (CE) systems. It was found that, at pH 2-4, sulfated beta-CD exhibited strong chiral recognition towards both triadimefon and triadimenol. The enantiorecognition was believed to result from the multiple interactions between sulfated beta-CD and the analytes, which included inclusion effect, electrostatic interaction, and hydrogen bonding. Under optimal conditions (phosphate buffer with 2% sulfated beta-CD, pH 2.5), simultaneous resolution of all chiral isomers of triadimefon and triadimenol was achieved in less than half an hour. In conjunction with solvent extraction and subsequent enrichment by solid-phase extraction (SPE), this new enantioseparation method was applied successfully in the study of stereoselectivity associated with the biotransformation of triadimefon to triadimenol by soil microorganisms. The present methodology was superior to the commonly adopted chiral gas chromatography (GC) approach in that a very mild procedure was involved from sample extraction to the ultimate chiral separation. Thus, the disturbance of the enantiomeric distribution patterns of the original soil samples by heat stress was an unlikely scenario. Furthermore, it was discovered that, owing to the unique selectivity of the present separation strategy, there was virtually no interference from the soil matrix, which led to improvements in both sensitivity and selectivity in real sample determination.  相似文献   

7.
Electrokinetic chromatography (EKC) using micelles of bile salts alone or mixed with sodium dodecyl sulfate (SDS) and neutral, anionic, or cationic cyclodextrins (CDs) in the separation buffer has been employed in order to achieve fast enantiomeric separation of basic drugs. A study of the enantiomeric separation ability of these chiral selectors concerning four basic drugs (epinephrine, terbutaline, clenbuterol, and salbutamol) has been carried out under different experimental conditions. The best chiral selectors to perform the enantiomeric separation of these drugs were neutral beta-CD derivatives, specifically permethylated beta-CD PM-beta-CD. The effect of the PM-beta-CD concentration, temperature, and applied voltage on the enantiomeric resolution of the basic drugs was investigated. The use of a 25 mM ammonium acetate buffer (pH 5.0), 30 mM in PM-beta-CD together with an applied voltage of 20 kV and a temperature of 15 degrees C enabled the individual and fast enantiomeric separation of epinephrine, norepinephrine, terbutaline, clenbuterol, and salbutamol each one into its two enantiomers in less than 3 min. The EKC method was validated (precision and accuracy) to quantitate terbutaline in a pharmaceutical preparation, obtaining a limit of detection of 4 microg/mL.  相似文献   

8.
The chiral separation of simendan enantiomers using capillary electrophoresis was studied with beta-cyclodextrin (beta-CD) as chiral selector. The influences of the concentration and pH of borate buffer solution, beta-CD concentration and methanol content in the background electrolyte were investigated. These factors were compared with those in an HPLC with beta-CD as chiral mobile phase additive (CMPA-HPLC). The quantification properties of the developed CE method were examined. A baseline separation of simendan enantiomers was achieved in the background electrolyte of 20 mmol/L borate buffer (pH 11.0) containing 12 mmol/L beta-CD-methanol (50:50 in volume ratio). The CE method is comparable with CMPA-HPLC in chiral resolution, although the optimal pH in CE (11.0) is much higher than that (6.0) in CMPA-HPLC. This chiral CE method is applicable to the quantitative ananlysis and enantiomeric excess value determination of L-simendan.  相似文献   

9.
成禹杉  杨晓兰  余瑜 《色谱》2007,25(4):478-481
建立了毛细管电泳手性分离多沙唑嗪中间体对映体的方法,并同时分离了多沙唑嗪对映体。考察了不同种类季铵盐对电渗流及分离的影响,其中四甲基氢氧化铵(TMB)能有效控制电渗流并提高组分的分离度。实验还考察了其他因素,如pH值、分离电压和磷酸二氢钠浓度对分离的影响。所用的毛细管为40 cm(有效长度30 cm)×50 μm,缓冲液为12 mmol/L β-环糊精、30 mmol/L TMB、60 mmol/L 磷酸二氢钠(pH 2.2),分离电压为20 kV。在此条件下多沙唑嗪及其中间体的对映体均达到了基线分离。实验结果表明,一些用β-环糊精不能完全分离的对映体通过加入TMB控制电渗流能达到满意的分离效果。  相似文献   

10.
A chiral procedure based on EKC was developed and validated for determination of the enantiomeric purity of PHA-543613, a drug candidate that was under development for treatment of the cognitive deficits of Alzheimer's disease and schizophrenia. Separation of enantiomers is accomplished via differential, enantiospecific complexation with a single-isomer, precisely sulfated beta-CD and heptakis-6-sulfato-beta-CD (HpS-beta-CD). Both neutral and sulfated CDs were screened before selecting HpS-beta-CD as the chiral selector. The separation is conducted in a 61 cm x 50 microm uncoated fused silica capillary with 25 mM HpS-beta-CD in pH 2.50, 25 mM lithium phosphate as the separation buffer with detection at 220 nm. Application of reverse polarity at -30 kV results in an elution time of about 12 min for PHA-543613 and 13 min for the undesired S-enantiomer. Quantification is versus an authentic reference S-enantiomer as an external standard in combination with an internal standard. The procedure was validated over the range 0.1-2.0% w/w. The detection limit is 0.01-0.02%. The amount of distomer intrinsic to the drug substance is about 0.1% or less. The developed method was used to generate stability data on multiple lots: in one case for up to 3 years.  相似文献   

11.
Chiral separation of 20 pairs of amino acids derivatized with fluoresceine-5-isothiocyanate (FITC) by capillary electrophoresis and laser-induced fluorescence detection was studied using the mixture of beta-cyclodextrin (beta-CD) and sodium taurocholate (STC) as selector. Resolution was considerably superior to that obtained by using either beta-CD or STC alone. The molar ratio of beta-CD to STC of about 2:3 was found to be critical to achieve maximum separation. At this beta-CD-to-STC ratio, chiral separation occurred at really low total concentration of beta-CD and STC (<0.1 mM). Other impacting factors were investigated including the total concentration of beta-CD and STC, pH, and capillary conditioning procedure between two successive runs. Using a running buffer of 80 mM borate containing 20 mM beta-CD and 30 mM STC at pH 9.3, all of the 20 pairs of FITC-amino acid enantiomers were baseline resolved. The resolutions of the most pairs of the amino acid enantiomers (17 of 20) were higher than 3.0, only three pairs gave a resolution lower than 3.0 but higher than 1.90 (beta-phenylserine, pSer). The highest resolution reached 14.58 (Glu). Two derivatives of beta-CD, 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis(2,6-di-O-methyl)-beta-CD (DM-beta-CD) were also explored. HP-beta-CD showed similar cooperative effect with STC, while DM-beta-CD together with STC led to poorer chiral separation.  相似文献   

12.
Two amino acid-based (leucine and isoleucine) alkenoxy micelle polymers were employed in this study for the separation of multichiral center-bearing beta-blockers, nadolol and labetalol. These polymers include polysodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) and polysodium N-undecenoxy carbonyl-L-isoleucinate (poly-L-SUCIL). Detailed synthesis and characterization were reported in our previous paper [26]. It was found that poly-L-SUCIL gives better chiral separation than poly-L-SUCL for both nadolol and labetalol isomers. The use of 50-100 mM poly-L-SUCIL as a single chiral selector provided separation of four and three isomers of labetalol and nadolol, respectively. Further optimization in separation of both enantiomeric pairs of nadolol and labetalol was achieved by evaluation of type and concentration of organic solvents, capillary temperature as well type and concentration of cyclodextrins. A synergistic approach, using a combination of poly-L-SUCIL and sulfated beta-CD (S-beta-CD) was evaluated and it showed dramatic separation for enantiomeric pairs of nadolol. On the other hand for labetalol enantiomers, separation was slightly decreased or remain unaffected using the dual chiral selector system. Finally, simultaneous separation of both nadolol and labetalol enantiomers was achieved in a single run using 25 mM poly-L-SUCIL and 5% w/v of S-beta-CD in less then 35 min highlighting the importance of high-throughput chiral analysis.  相似文献   

13.
Bitar Y  Holzgrabe U 《Electrophoresis》2007,28(15):2693-2700
CD-modified microemulsion EKC as a CE technique has been applied to the chiral separation of atropine, scopolamine, ipratropium and homatropine. Enantioseparations of these tropa alkaloids were optimized by using a standard oil-in-water (O/W) microemulsion and varying the nature and concentration of CD additives as well as of the organic modifier (methanol, 2-propanol or ACN) whilst keeping the applied voltage of 15 kV and capillary temperature of 30 degrees C constant. The standard (O/W) microemulsion BGE solution consisted of 0.8% w/w octane, 6.6% w/w 1-butanol, 2.0% w/w SDS and 90.6% w/w 10 mM sodium tetraborate buffer (pH 9.2). Enantioseparations with high resolution and short migration times of all tropa alkaloids were achieved by using heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-CD and sulfated beta-CD in the microemulsion BGE and were superior to corresponding CD-modified CE methods.  相似文献   

14.
H Matsunaga  J Haginaka 《Electrophoresis》2001,22(16):3382-3388
Separations of basic drug enantiomers have been investigated using glucuronyl glucosyl beta-cyclodextrin (GUG beta-CD) as a chiral selector in the background electrolyte by capillary zone electrophoresis. The effects of GUG beta-CD concentration and running buffer pH on the migration times and resolution of 16 basic drug enantiomers were precisely examined using a linear polyacrylamide-coated capillary. High resolution of 16 basic drug enantiomers was generally attained with a running buffer pH 2.5 or 3.5 containing 10 mM GUG beta-CD. Next, we compared the chiral resolution abilities of GUG beta-CD with those of beta-CD and maltosyl beta-CD (G2 beta-CD). GUG beta-CD showed higher resolution for basic drug enantiomers tested than beta-CD and G2 beta-CD. This could be due to that hydrogen bonding or ionic interactions of uncharged and charged glucuronyl glucosyl groups of GUG beta-CD with an analyte could stabilize the inclusion complex.  相似文献   

15.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

16.
The influences of buffer pH and the concentration of beta-cyclodextrins (beta-CDs) on the separation and migration behavior of 13 structurally related phenothiazines in CD-modified capillary zone electrophoresis (CD-CZE) using a phosphate background electrolyte at low pH were investigated. We focused on the separation of these phenothiazines, including the enantiomers of chiral analytes, with the use of beta-CD and hydroxypropyl-beta-CD (HP-beta-CD) as electrolyte modifiers or chiral selectors at concentrations less than 8 mM. The results indicate that the interactions of phenothiazines with beta-CDs are very strong and that effective separations of 13 analytes can be achieved with addition of 0.3 mM beta-CD or 0.5 mM HP-beta-CD in a phosphate buffer at pH 3.0. Binding constants of phenothiazines to beta-CDs were evaluated for a better understanding of the interactions of phenothiazines with beta-CDs.  相似文献   

17.
EKC using a neutral CD as chiral selector was applied in this work to the development of a method enabling the enantiomeric separation of ketoconazole and terconazole antifungals. The influence of different experimental conditions such as temperature, CD concentration, pH, and nature and concentration of the buffer on the enantiomeric resolution of the compounds studied was investigated. The use of 10 mM heptakis-(2,3,6-tri-O-methyl)-beta-CD in a 100 mM phosphate buffer (pH 3.5) with a temperature of 15 degrees C allowed the separation of the enantiomers of ketoconazole and terconazole with high resolution (R(s) > 2.0). The rapid separation of ketoconazole enantiomers with an analysis time less than 3 min was carried out after fitting some experimental parameters. The developed method was applied to the determination of ketoconazole in different pharmaceutical formulations.  相似文献   

18.
Four novel chiral anionic surfactants having carbohydrate hydrophilic heads, sodium n-dodecyl 1-thio-beta-D-glucopyranoside 6-hydrogen sulfate (6-betaGlcD), sodium n-dodecyl 1-thio-beta-L-glucopyranoside 6-hydrogen sulfate (6-betaGlcL), sodium n-dodecyl 1-thio-beta-L-fucopyranoside 3-hydrogen sulfate (3-betaFucL), and sodium n-dodecyl 1-thio-alpha-L-rhamnopyranoside 3-hydrogen sulfate (3-alphaRhaL), were synthesized by selective sulfation of the corresponding thioglycosides. Their CMC determined by fluorescence using pyrene as a probe in water was 1.3-2.7 mM. These surfactants found to be useful as chiral selectors for enantiomeric separation by MEKC. The enantiomeric separation was optimized with respect to pH, buffer concentration, and surfactant concentration. Under the optimized conditions (50 mM phosphate buffer at pH 6.5, 30 mM surfactant, 20 kV), the enantiomeric separations of five dansylated amino acids (Dns-AAs) were achieved within approximately 20 min with the migration order of Val相似文献   

19.
An enantiomeric separation of dopamine-derived neurotoxins by capillary electrophoresis has been developed. Tetrahydroisoquinoline (TIQ), dopamine (DA), (R/S)-1-benzyl-TIQ (BTIQ), (R/S)-6,7-dihydroxy-1-methyl-TIQ (salsolinol, Sal), and (R/S)-6,7-dihydroxy-1, 2-dimethyl-TIQ (N-methyl-salsolinol, NMSal) were studied as model compounds. The CE running buffer (50 mM phosphate buffer at pH 3.0) contained 1.5 M urea and 12 mM beta-CD as a chiral selector. During separation, the (R)-enantiomers formed more stable inclusion complexes with beta-CD, and thus had a longer migration time than their optical antipodes. It was noticed that the recovery rates of these TIQ derivatives were very poor (< 15%) during protein precipitation, a procedure widely used for cleaning up biological samples. The recovery was significantly improved by pre-mixing the sample with a surfactant (e.g., sodium hexanesulfonate or Triton X-100) to reduce the co-precipitation. The present method in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was applied to study samples obtained from in vitro incubation of two catecholamines, dopamine and epinine, with aldehydes forming neurotoxins including (S)- and (R)-NMSal enantiomers. The later is known to induce Parkinsonism in rats.  相似文献   

20.
Electrokinetic chromatography (EKC) was employed to achieve the enantiomeric separation of a group of chiral 1,4-dihydropyridines (DHPs) with pharmacological activity. Micelles of bile salts alone or mixed with neutral cyclodextrins, micelles of sodium dodecyl sulfate (SDS) mixed with neutral cyclodextrins, and anionic cyclodextrin derivatives, i.e., carboxymethyl-gamma-cyclodextrin (CM-gamma-CD), carboxymethyl-beta-cyclodextrin (CM-beta-CD), and succinylated beta-cyclodextrin (Succ-beta-CD), were employed as pseudostationary phases. The enantiomeric separation ability of these chiral selectors with respect to DHPs was studied in different experimental conditions. CM-beta-CD was shown to be the best chiral selector to perform the enantiomeric separation of DHPs by EKC. Next, the influence of the CM-beta-CD concentration, the pH and nature of the buffer, the temperature, and the applied voltage on the enantiomeric resolution of DHPs was studied. The use of a 50 mM ammonium acetate buffer, pH 6.7, 25 mM in CM-beta-CD together with an applied voltage of 15 or 20 kV, and a temperature of 15 degrees C enabled the individual enantiomeric separation of twelve DHPs, each one into its two enantiomers, and their separation in multicomponent mixtures of up to six DHPs into all their enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号