首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Eight kinds of density functionals named B3LYP, PBE1PBE, B1B95, BLYP, BP86, G96PW91, mPWPW91, and SVWN along with two different valence basis sets (LANL2DZ and CEP‐121g) are employed to study the transition‐metal dimers for the elements of group VIII. By comparing the equilibrium bond distances, vibrational frequencies, and dissociation energies of the ground state of these dimers with the available experimental values and theoretical data, we show that the “pure” DFT methods (G96PW91, BLYP, and BP86) with great‐gradient approximation always give better results relative to the hybrid HF/DFT schemes (B3LYP, PBE1PBE, and B1B95). The striking case found by us is that the G96PW91 functional, which is not tested in previous systemic studies, always predicts the dissociation energy to be well. The Ru2 and Os2 dimers are sensitive to not only the functionals employed but also the valence basis sets adopted. The natural bond orbital population is analyzed, and the molecular orbitals of the unpaired electrons are determined. Furthermore, our results indicate that the s and d orbitals of these dimers always hybridize with each other except for Rh2 and Pt2 molecules. And by analyzing the electron configuration of the bonding atom, the dissociation limit of the ground state is obtained. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

3.
选取了杂化泛函B3LYP, B3PW91, O3LYP, PBE0, 以及与之相对应的GGA泛函BLYP, BPW91, OLYP和PBE, 还选取了能更好地兼顾强相互作用和弱相互作用的X3LYP泛函和在预测NMR的化学位移有较好表现的OPBE泛函, 以及两种meta-GGA泛函VSXC和TPSS, 共12种泛函, 详细地考察了这些泛函在预测EA方面的准确性.  相似文献   

4.
5.
A benchmark comparison for different computational methods and basis sets has been presented. In this study, five computational methods (Hartree–Fock (HF), MP2, B3LYP, MPW1MP91, and PBE1PBE) along with 18 basis sets have been applied to optimize the geometry of carbon disulfide (CS2), and further calculate the vibrational frequencies of the optimized geometries. The differences between the calculated frequencies and corresponding experimental data are used to evaluate the efficiency of each combination of computational method and basis set. The comparison of frequency difference indicates that B3LYP generally gives the best prediction of frequencies for CS2, whereas the other two density functional theory (DFT) methods, i.e., MPW1PW91 and PBE1PBE, often give parallel results. Although MP2 predicts the frequencies with accuracy almost as good as those from DFT methods, in a particular case, HF calculation outperforms MP2 as well as MPW1PW91 and PBE1PBE for prediction of the frequency of asymmetrical stretching for CS2. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The structure and cohesive energy of crystalline urea have been investigated at the ab initio level of calculation. The performance of different Hamiltonians in dealing with a hydrogen-bonded molecular crystal as crystalline urea is assessed. Detailed calculations carried out by adopting both HF and some of the most popular DFT methods in solid-state chemistry are reported. Local, gradient-corrected, and hybrid functionals have been adopted: SVWN, PW91, PBE, B3LYP, and PBE0. First, a 6-31G(d,p) basis set has been adopted, and then the basis set dependence of computed results has been investigated at the B3LYP level. All calculations were carried out by using a development version of the periodic ab initio code CRYSTAL06, which allows full optimization of lattice parameters and atomic coordinates. With the 6-31G(d,p) basis set, structural features are well reproduced by hybrid methods and GGA. LDA gives lattice parameters and hydrogen-bond distances that are too small relative to experiment, while at the HF level the opposite trend is observed. Results show that hybrid methods are more accurate than HF and both LDA and GGA functionals, with a trend in the computed properties similar to that of hydrogen-bonded molecular complexes. When BSSE and ZPE are taken into account, all methods, except LDA, give computed cohesive energies that are underestimated with respect to the experimental sublimation enthalpy. Dispersion energy, not properly taken into account by DFT methods, plays a crucial role. Such a deficiency also affects dramatically the computed crystalline structure, especially when large basis sets are adopted. We show that this is an artifact due to the BSSE. Indeed, with small basis sets the BSSE gives an extra-binding that compensates for the missing dispersion forces, thus yielding structures in fortuitous agreement with experiment.  相似文献   

7.
Calculated harmonic vibrational frequencies systematically deviate from experimental vibrational frequencies. The observed deviation can be corrected by applying a scale factor. Scale factors for: (i) harmonic vibrational frequencies [categorized into low (<1000 cm?1) and high (>1000 cm?1)], (ii) vibrational contributions to enthalpy and entropy, and (iii) zero‐point vibrational energies (ZPVEs) have been determined for widely used density functionals in combination with polarization consistent basis sets (pc‐n, n = 0,1,2,3,4). The density functionals include pure functionals (BP86, BPW91, BLYP, HCTH93, PBEPBE), hybrid functionals with Hartree‐Fock exchange (B3LYP, B3P86, B3PW91, PBE1PBE, mPW1K, BH&HLYP), hybrid meta functionals with the kinetic energy density gradient (M05, M06, M05‐2X, M06‐2X), a double hybrid functional with Møller‐Plesset correlation (B2GP‐PLYP), and a dispersion corrected functional (B97‐D). The experimental frequencies for calibration were from 41 organic molecules and the ZPVEs for comparison were from 24 small molecules (diatomics, triatomics). For this family of basis sets, the scale factors for each property are more dependent on the functional selection than on basis set level, and thus allow for a suggested scale factor for each density functional when employing polarization consistent basis sets (pc‐n, n = 1,2,3,4). A separate scale factor is recommended when the un‐polarized basis set, pc‐0, is used in combination with the density functionals. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Nemykin VN  Basu P 《Inorganic chemistry》2003,42(13):4046-4056
The electronic structures, geometries, and vibration frequencies of the open-shell molybdenum(V) ion, [MoOCl(4)](-), have been calculated at the extended Hückel, semiempirical ZINDO/1, ZINDO/S, and PM3(tm), as well as ab initio and DFT theoretical levels. Electronic structure calculations suggest that the expected metal-fold orbital order can be satisfied only at the DFT level. The time-dependent density functional theory (TDDFT) approach has been used for the calculation of the vertical excitation energies in the UV-vis region with different basis sets, starting geometries, and exchange-correlation functionals. A good agreement between the predicted and the experimental electronic absorption and MCD spectra of the complex, [MoOCl(4)](-), was observed when the B3LYP and B3P86 exchange-correlation functionals were used with a full electron valence double-zeta with polarization basis set for the molybdenum and 6-311G(d) for all other atoms. Similar results were obtained when the LANL2DZ effective core potential for molybdenum atom and 6-31G(d) for all other atoms were used. The best absolute deviation of 0.13 and mean deviation of 0.01 eV were calculated for the bands in the UV-vis region by B3P86, while the results for the B3LYP exchange-correlation functional were less satisfactory. Compared to polarization functions, the inclusion of diffuse functions resulted in little improvement. The calculated excitations energies and charge-transfer band intensities are found to be sensitive to the Mo=O distance and O-Mo-Cl angle.  相似文献   

9.
本文用从头计算RHF和密度泛函B3LYP方法以及LanL2DZ,SDD和6-31G(d)基组计算了配合物M(Im)2X2 (Im=imidazole;M=Zn(Ⅱ),Pd(Ⅱ),Pt(Ⅱ);X=F,Cl,Br,I)的几何构型以及Far-IR和Raman振动频率。计算结果表明,对Zn(Ⅱ)配合物而言,B3LYP/6-31G(d)方法得到的几何参数与实验值吻合得最好,B3LYP/SDD次之。在计算Far-IR和Raman振动频率时,发现采用6-31G(d)基组,两种方法计算的结果差别不大。对LanL2DZ和SDD基组而言,对计算结果影响较大的是理论方法,基组影响甚微,个别的振动频率基组影响较大,相比较而言,SDD基组得到的结果更好一些。本文所使用的两种计算方法都能得到与实验值比较吻合的结果,而用从头计算RHF方法计算的结果与实验值更接近一些。在此基础上,预测了Pd(Ⅱ)和Pt(Ⅱ)配合物的Far-IR和Raman振动频率。  相似文献   

10.
The longitudinal polarizability, α(xx), and second hyperpolarizability, γ(xxxx), of polyacetylene are evaluated by using the coupled perturbed Hartree-Fock/Kohn-Sham (HF/KS) scheme as implemented in the periodic CRYSTAL code and a split valence type basis set. Four different density functionals, namely local density approximation (LDA) (pure local), Perdew-Becke-Ernzerhof (PBE) (gradient corrected), PBE0, and B3LYP (hybrid), and the Hartree-Fock Hamiltonian are compared. It is shown that very tight computational conditions must be used to obtain well converged results, especially for γ(xxxx), that is, very sensitive to the number of k(->) points in reciprocal space when the band gap is small (as for LDA and PBE), and to the extension of summations of the exact exchange series (HF and hybrids). The band gap in LDA is only 0.01 eV: at least 300 k(->) points are required to obtain well converged total energy and equilibrium geometry, and 1200 for well converged optical properties. Also, the exchange series convergence is related to the band gap. The PBE0 band gap is as small as 1.4 eV and the exchange summation must extend to about 130 A? from the origin cell. Total energy, band gap, equilibrium geometry, polarizability, and second hyperpolarizability of oligomers -(C(2)H(2))(m)-, with m up to 50 (202 atoms), and of the polymer have been compared. It turns out that oligomers of that length provide an extremely poor representation of the infinite chain polarizability and hyperpolarizability when the gap is smaller than 0.2 eV (that is, for LDA and PBE). Huge differences are observed on α(xx) and γ(xxxx) of the polymer when different functionals are used, that is in connection to the well-known density functional theory (DFT) overshoot, reported in the literature about short oligomers: for the infinite model the ratio between LDA (or PBE) and HF becomes even more dramatic (about 500 for α(xx) and 10(10) for γ(xxxx)). On the basis of previous systematic comparisons of results obtained with various approaches including DFT, HF, Moller-Plesset (MP2) and coupled cluster for finite chains, we can argue that, for the infinite chain, the present HF results are the most reliable.  相似文献   

11.
The performance of six different density functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in describing the infrared spectrum of forsterite, a crystalline periodic system with orthorhombic unit cell (28 atoms in the primitive cell, Pbmn space group), is investigated by using the periodic ab initio CRYSTAL09 code and an all‐electron Gaussian‐type basis set. The transverse optical (TO) branches of the 35 IR active modes are evaluated at the equilibrium geometry together with the oscillator strengths and the high‐frequency dielectric tensor ?. These quantities are essential to compute the dielectric function ?(ν), and then the reflectance spectrum R(ν), which is compared with experiment. It turns out that hybrid functionals perform better than LDA and GGA, in general; that B3LYP overperforms WC1LYP and, in turn, PBE0; that PBESOL is better than PBE; that LDA is the worst performing functional among the six under study. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

12.
The HSO and HOS isomers have been revisited using the DFT functionals, B3LYP, B3PW91, and PBE, in combination with tight d-augmented correlation consistent basis sets, cc-pV(x+d)Z and aug-cc-pV(x+d)Z for second-row atoms. Structures, vibrationally averaged structures, relative energies, harmonic and anharmonic frequencies, enthalpies of formation of HSO and HOS, and the barrier for the HSO/HOS isomerization have been determined. These results were compared with results from previous DFT and ab initio studies in which the standard correlation consistent basis sets were used. The relative energies of the two isomers converge more rapidly and smoothly with respect to increasing basis set size for the tight d-augmented sets than for the standard basis sets. Our best calculations, B3PW91/aug-cc-pV(5+d)Z, for the relative energy of the isomers are in excellent agreement with previous CCSD(T) results given by Wilson and Dunning.  相似文献   

13.
Medium basis sets based upon contractions of Gaussian primitives are developed for the third‐row elements Ga through Kr. The basis functions generalize the 6‐31G and 6‐31G* sets commonly used for atoms up to Ar. A reexamination of the 6‐31G* basis set for K and Ca developed earlier leads to the inclusion of 3d orbitals into the valence space for these atoms. Now the 6‐31G basis for the whole third‐row K through Kr has six primitive Gaussians for 1s, 2s, 2p, 3s, and 3p orbitals, and a split‐valence pair of three and one primitives for valence orbitals, which are 4s, 4p, and 3d. The nature of the polarization functions for third‐row atoms is reexamined as well. The polarization functions for K, Ca, and Ga through Kr are single set of Cartesian d‐type primitives. The polarization functions for transition metals are defined to be a single 7f set of uncontracted primitives. Comparison with experimental data shows good agreement with bond lengths and angles for representative vapor‐phase metal complexes. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 976–984, 2001  相似文献   

14.
The equilibrium structural parameters, high‐ and low‐frequency dielectric tensors, Born effective charges, and Γ‐point vibrational frequencies of bulk Al2O3 corundum are calculated by using the periodic, ab initio program CRYSTAL, which adopts an all‐electron Gaussian‐type basis set. The effect of basis set and the performance of three different functionals, i.e., LDA, PW91, and B3LYP, are discussed. The mean absolute deviation from the measured frequencies is as small as 7 cm?1 for both the LDA and B3LYP functionals, indicating that these functionals perform extremely well in this case. The mean absolute deviation increases to 18 cm?1 when the PW91 functional is used. All three functionals reproduce the equilibrium geometry of corundum to a high level of accuracy, with LDA and B3LYP outperforming PW91 slightly. The comparison of the current all‐electron calculations with previous plane‐wave, pseudo‐potential calculations shows an overall similar performance. The results of isotopic substitution for both Al and O are also presented. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

15.
Local density approximation (LDA), several popular general gradient approximation (GGA), hybrid module based density functional theoretical methods: SVWN, BLYP, PBE, HCTH, B3LYP, PBE1PBE, B1LYP, and BHandHLYP, and some nonstandard hybrid methods are applied in geometry prediction for C60 and C70. HCTH with 3-21G basis set is found to be one of the best methods for fullerene structural prediction. In the predictions of relative stability of C50 isomers, PM3 is an efficient method in the first step for sorting out the most stable isomers. HCTH with 3-21G predicts very good geometries for C50, similar to the performance of B3LYP6-31G(d). The gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital from the predictions of all the density functional theory methods has the following descending order: E(gap)(half-and-half hybrid)>E(gap)(B3LYP)>E(gap)(HCTH)(GGA)>E(gap)(SVWN)(LDA).  相似文献   

16.
The n --> pi* transitions in more than 100 thiocarbonyl dyes have been calculated with an ab initio procedure relying on the combination of time-dependent density functional theory (TD-DFT) for evaluating excited states and the polarizable continuum model (PCM) for modeling the bulk solvent effects on both the geometrical and electronic structures. Two hybrid functionals (B3LYP and PBE0) and several basis sets, some including f polarization functions, have been used. B3LYP provides the most accurate raw estimates, but once simple linear regression is performed, both functionals give similar results with a small advantage for PBE0. By use of the latter, the mean absolute deviation with respect to experiment is limited to 0.06 eV whereas less than 20% of the estimates differ from absorption data by more than 0.10 eV. To assess the validity limits of our model, compounds containing multiple C=S chromophores have also been considered.  相似文献   

17.
We have calculated optimal frequency scaling factors for the B3LYP/ 6-311+G(d,p) method for fundamental vibrational frequencies on the basis of a set of 125 molecules. Using the new scaling factor, the vibrational frequencies calculated with the triple-zeta basis set 6-311+G(d,p) give significantly better accuracy than those calculated with the double-zeta 6-31G(d) basis set. Scale factors were also determined for low-frequency vibrations using the molecular set of 125 molecules and for zero-point energies using a smaller set of 40 molecules. We have studied the effect on the calculated vibrational frequencies for various combinations of diffuse and polarization functions added to the triple-zeta 6-311G basis set. The 6-311+G(d,p) basis set is found to give almost converged frequencies for most molecules, and we conclude that our optimum scaling factors are valid for the basis sets 6-311G(d,p) to 6-311++G(3df,3pd). The new scale factors are 0.9679 for vibrational frequencies, 1.0100 for low-frequency vibrations, and 0.9877 for zero-point vibrational energies.  相似文献   

18.
Various hybrid functionals (B3LYP, B97-2, PBE0, BMK, BH&HLYP, CAM-B3LYP, and LC-ωPBE) implemented in density functional theory were applied to give estimate of static first hyperpolarizabilty (β(0)) of (E)-benzaldehyde phenylhydrazone designated as (E)-BPH. Against those of MP2 computations as a function of the underlying density functional, good agreement was obtained with the BH&HLYP and CAM-B3LYP functionals. The LC-ωPBE functional and the B3LYP, PBE0, B97-2, and BMK functionals underestimated and overestimated β(0), respectively. The basis set effect on the calculated β(0) was also investigated. It turned out that the 6-311+G(2d,p) basis set provided excellent converged value of β(0). On the basis of the calculated results, we investigated the substituent effect on β(0) of donor-acceptor (D-A) substituted (E)-BPH systematically by using the BH&HLYP and CAM-B3LYP computations with the 6-311+G(2d,p) basis set. We proposed a Zwitterion structure to explain the calculated trend in the substituent effect and the enhanced hyperpolarizability of type II compounds (A-(E)-BPH-D) than type I compounds (D-(E)-BPH-A). Natural bonding orbital analysis carried out at BH&HLYP/6-311+G(2d,p)//B3LYP/6-31G(2df,p) level of theory substantiated the claim.  相似文献   

19.
Density functional theory calculations of the (51)V hyperfine coupling (HFC) tensor A, have been completed for eighteen V(IV)O(2+) complexes with different donor set, electric charge and coordination geometry. A tensor was calculated with ORCA software with several functionals and basis sets taking into account the spin-orbit coupling contribution. The results were compared with those obtained with Gaussian 03 software using the half-and-half functional BHandHLYP and 6-311g(d,p) basis set. The order of accuracy of the functionals in the prediction of A(iso), A(z) and dipolar term A(z,anis) is BHandHLYP > PBE0 > B3PW > TPSSh > B3LYP > BP86 > VWN5 (for A(iso)), BHandHLYP > PBE0 > B3PW > TPSSh > B3LYP > BP86 > VWN5 (for A(z)), B3LYP > PBE0 ~ B3PW ~ BHandHLYP > TPSSh > BP86 ~ VWN5 (for A(z,anis)). The good agreement in the prediction of A(z) with BHandHLYP is due to a compensation between the overestimation of A(iso) and underestimation of A(z,anis) (A(z) = A(iso) + A(z,anis)), whereas among the hybrid functionals PBE0 performs better than the other ones. BHandHLYP functional and Gaussian software are recommended when the V(IV)O(2+) species contains only V-O and/or V-N bonds, whereas PBE0 functional and ORCA software for V(IV)O(2+) complexes with one or more V-S bonds. Finally, the application of these methods to the coordination environment of V(IV)O(2+) ion in V-proteins, like vanadyl-substituted insulin, carbonic anhydrase, collagen and S-adenosylmethionine synthetase, was discussed.  相似文献   

20.
Accurate computationally derived reduction potentials are important for catalyst design. In this contribution, relatively inexpensive density functional theory methods are evaluated for computing reduction potentials of a wide variety of organic, inorganic, and organometallic complexes. Astonishingly, SCRF single points on B3LYP optimized geometries with a reasonably small basis set/ECP combination works quite well‐‐B3LYP with the BS1 [modified‐LANL2DZ basis set/ECP (effective core potential) for metals, LANL2DZ(d,p) basis set/LANL2DZ ECP for heavy nonmetals (Si, P, S, Cl, and Br), and 6‐31G(d') for other elements (H, C, N, O, and F)] and implicit PCM solvation models, SMD (solvation model based on density) or IEFPCM (integral equation formalism polarizable continuum model with Bondi atomic radii and α = 1.1 reaction field correction factor). The IEFPCM‐Bondi‐B3LYP/BS1 methodology was found to be one of the least expensive and most accurate protocols, among six different density functionals tested (BP86, PBEPBE, B3LYP, B3P86, PBE0, and M06) with thirteen different basis sets (Pople split‐valence basis sets, correlation consistent basis sets, or Los Alamos National Laboratory ECP/basis sets) and four solvation models (SMD, IEFPCM, IPCM, and CPCM). The MAD (mean absolute deviation) values of SCRF‐B3LYP/BS1 of 49 studied species were 0.263 V for SMD and 0.233 V for IEFPCM‐Bondi; and the linear correlations had respectable R 2 values (R 2 = 0.94 for SMD and R 2 = 0.93 for IEFPCM‐Bondi). These methodologies demonstrate relatively reliable, convenient, and time‐saving functional/basis set/solvation model combinations in computing the reduction potentials of transition metal complexes with moderate accuracy. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号