首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern cosmological theory is based on the Friedmann–Robertson–Walker (FRW) metric. Often written in terms of co-moving coordinates, this well-known solution to Einstein’s equations owes its elegant and highly practical formulation to the cosmological principle and Weyl’s postulate, upon which it is founded. However, there is physics behind such symmetries, and not all of it has yet been recognized. In this paper, we derive the FRW metric coefficients from the general form of the spherically symmetric line element and demonstrate that, because the co-moving frame also happens to be in free fall, the symmetries in FRW are valid only for a medium with zero active mass. In other words, the spacetime of a perfect fluid in cosmology may be correctly written as FRW only when its equation of state is ρ+3p = 0, in terms of the total pressure p and total energy density ρ. There is now compelling observational support for this conclusion, including the Alcock–Paczy´nski test, which shows that only an FRW cosmology with zero active mass is consistent with the latest model-independent baryon acoustic oscillation data.  相似文献   

2.
The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order in the temperature: all of them are obtained. Finally, some features about the physical behavior of the models are pointed out.This revised version was published online in April 2005. The publishing date was inserted.  相似文献   

3.
We analyze the dynamics of the FRW models with global rotation in terms of dynamical system methods. We reduce the dynamics of these models to the FRW models with some fictitious fluid which scales like radiation matter. This fluid mimics dynamical effects of global rotation. The significance of the global rotation of the Universe for the resolution of the acceleration and horizon problems in cosmology is investigated. It is found that the dynamics of the Universe can be reduced to the two-dimensional Hamiltonian dynamical system. Then the construction of the Hamiltonian allows for full classification of evolution paths. On the phase portraits we find the domains of cosmic acceleration for the globally rotating universe as well as the trajectories for which the horizon problem is solved. We show that the FRW models with global rotation are structurally stable. This proves that the universe acceleration is due to the global rotation. It is also shown how global rotation gives a natural explanation of the empirical relation between angular momentum for clusters and superclusters of galaxies. The relation J ~ M2 is obtained as a consequence of self similarity invariance of the dynamics of the FRW model with global rotation. In derivation of this relation we use the Lie group of symmetry analysis of differential equation.  相似文献   

4.
We explore the conditions for the existence of Noether symmetries in the dynamics of FRW metric, non minimally coupled with a scalar field, in the most general situation, and with nonzero spatial curvature. When such symmetries are present we find a general exact solution for the Einstein equations. We also show that non Noether symmetries can be found. Finally, we present an extension of the procedure to the Kantowski-Sachs metric which is particularly interesting in the case of degenerate Lagrangian.  相似文献   

5.
By accepting the validity of certain conjectures in classical general relativity and kinetic theory, it is argued that, in a sense, the spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) cosmological models are unique. This is accomplished in two steps. First, there is reason to believe that kinetic theory requires perfect fluids to be shear-free. Second, it seems that general relativity constrains expanding shear-free fluids to be irrotational. The uniqueness of the FRW models then follows, since it has already been established that they are the only space-times which represent an expanding shear-free irrotational perfect fluid that are physically reasonable on a global scale.This essay received an honorable mention (1986) from the Gravity Research Foundation—Ed.  相似文献   

6.
The quantization of gravity coupled to barotropic perfect fluid matter field with a cosmological constant is carried out. The wave function can be determined for any curvature index in the FRW minisuperspace model. The meaning of the existence of the classical solution is discussed in the WKB semiclassical approximation.  相似文献   

7.
Barotropic FRW cosmologies are presented from the standpoint of nonrelativistic supersymmetry. First, we reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations. Employing the factorization procedure, the solutions of the latter equations are divided into the two classes of bosonic (nonsingular) and fermionic (singular) cosmological solutions. We next introduce a coupling parameter denoted by K between the two classes of solutions and obtain barotropic cosmologies with dissipative features acting on the scale factors and spatial curvature of the universe. The K-extended FRW equations in comoving time are presented in explicit form in the low coupling regime. The standard barotropic FRW cosmologies correspond to the dissipationless limit K = 0.  相似文献   

8.
For the Friedmann–Robertson–Walker (FRW) Universe with negative curvature, sustained by a spontaneous Z2? symmetry breaking scalar field, depending on time alone, we have derived the Einstein–Gordon system of equations. For physically relevant cases, the matter-curvature system have been numerically analyzed.  相似文献   

9.
The integrability properties of the field equationL xx =F(x)L 2 of a spherically symmetric shear-free fluid are investigated. A first integral, subject to an integrability condition onF(x), is found, giving a new class of solutions which contains the solutions of Stephani and Srivastava as special cases. The integrability condition onF(x) is reduced to a quadrature which is expressible in terms of elliptic integrals in general. There are three classes of solution and in general the solution ofL xx =F(x)L 2 can only be written in parametric form. The case for whichF=F(x) can be explicitly given corresponds to the solution of Stephani. A Lie analysis ofL xx =F(x)L 2 is also performed. If a constant vanishes, then the solutions of Kustaanheimo and Qvist and of this paper are regained. For 0 we reduce the problem to a simpler, autonomous equation. The applicability of the Painlevé analysis is also briefly considered.  相似文献   

10.
When discussing spherically symmetric gravitational fields one usually assumes that the whole space-time is invariant under theO(3) group of transformations. In this paper, the Einstein field equations are investigated under the weaker assumption that only the 3-spacest=const areO(3) symmetric. The following further assumptions are made: (1) Thet lines are orthogonal to the spacest=const. (2) The source in the field equations in a perfect fluid, or dust, or the term, or the empty space. (3) With respect to the center of symmetry the fluid source may move only radially if at all. Under these assumptions one solution with a perfect fluid source, found previously by Stephani, is recovered and interpreted geometrically, and it is shown that it is the sole solution which is not spherically symmetric in the traditional sense. The paper ends with a general discussion of cosmological models whose 3-spacest=const are the same as in the Robertson-Walker models. No new solutions were explicitly found, but it is shown that such models exist in which the sign of curvature is not fixed in time.  相似文献   

11.
We study the global properties of the Gowdy metrics generated by Cauchy data on the 3-torus. We show that the boundaries of the maximal Cauchy developments of Gowdy initial data sets are always “crushing singularities” in the sense of Eardley and Smarr. This means that each solution admits a slicing in which tr K(t) (the trace of the second fundamental form induced on the surface Σt of the slicing) uniformly blows up as t approaches its limiting value. A theorem of Hawking shows that the maximal Cauchy development cannot extend beyond the boundary at which tr K blows up and our result shows that no singularities arise to halt the evolution until this boundary is reached. Thus each maximal Cauchy development is always as large as it can be, consistent with Hawking's theorem. We discuss the relevance of this result to the strong cosmic censorship conjecture and the question of when the crushing singularities are in fact curvature singularities.  相似文献   

12.
Fluid space-times which admit a conformal Killing vector (CKV) are studied. It is shown that even in a perfect fluid space-time a conformal motion will not, in general, map the fluid flow lines onto fluid flow lines; consequently, perfect fluid space-times and, in particular, the simplest perfect fluid space-times known to admit a CKV, namely the Friedmann-Robertson-Walker (FRW) space-times, are studied. A direct proof that there do not exist any special CKV in FRW space-times will be given, thereby motivating the study of the physically more relevant proper CKV. Indeed, one of the principal motivations of the present work is the study of the symmetry inheritance problem for proper CKV. Since the FRW metric can, in general, satisfy the Einstein field equations for a non-comoving imperfect fluid, the relationship between the FRW models (and in particular the standard comoving perfect fluid models) and the conditions under which conformal motions (and in addition homothetic motions) map fluid flow lines onto fluid flow lines are investigated. Finally, further properties of fluid space-times which admit a proper CKV, and in particular space-times in which the CKV is parallel to the fluid four-velocity, are discussed.  相似文献   

13.
We display a simple solution to the Penrose CCC scenario. For this solution we chose for the late stages of the previous aeon a FRW, $\hbox {k}=0$ , universe with both a cosmological constant and radiation (no mass) while for the early stages of the ‘present’ aeon we have again a FRW universe, $\hbox {k}=0$ , with the same cosmological constant and again with radiation but with mass not yet present. The Penrose conditions force the parameters describing the radiation of the former and present aeons to be equal and the transition metric in the overlap region turns out to be flat. We further study how different rest-mass zero fields transition between the different conformally related regions. These (test) fields appears to easily allow perturbations of the geometry within the CCC scenario.  相似文献   

14.
The conditions for the existence of Newtonian analogs of a five dimensional (5D) generalization of the Friedman-Robertson-Walker (FRW) cosmological models in Wesson's gravitational theory are re-analyzed. Contrarily to other claims, we show that classical analogs can be obtained for non-null cosmological constant and negative or null spatial curvature.  相似文献   

15.
Here, an accelerated phantom model for the late universe is explored, which is free from future singularity. It is interesting to see that this model exhibits strong curvature for all time in future, unlike models with ‘big-rip singularity’ showing high curvature near singularity time only. So, quantum gravity effects grow dominant as time increases in late universe too. More importantly, it is demonstrated that quantum corrections to FRW equations lead to non-violation of ‘cosmic energy conditions’ of general relativity, which are violated for accelerating universe without these corrections.  相似文献   

16.
References to energy of the universe have focussed upon the matter contribution, whereas the conservation laws must include a gravitational contribution as well. The conservation laws as applied to FRW cosmologies suggest a zero total energy irrespective of the spatial curvature when the value of the cosmological constant is taken to be zero. This result provides a useful constraint on models of the early universe and lends support to currently studied theories of the universe arising as a quantum fluctuation of the vacuum.  相似文献   

17.
The dynamical system of multiple scalar fields in FRW universe with different spatial curvature have been analyzed in this paper. In the radiation-dominated phase, the constant curvature factor k does not work on the cosmic dynamical behaviors, including the scaling solution, energy density parameter and equation-of-state parameter. These aspects are affected by curvature factor k in the matter-dominated phase. In the special scalar field-dominated phase, the energy density parameter normalization restricts the Universe is spatial flat and the curvature factor k is not present in the dynamics. In this paper, the Universe is closed in the matter-dominated phase, and flat in the scalar field-dominated phase. The spatial flatness and the w ϕ =−1 in the third phase are coincide with the current observations.  相似文献   

18.
A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by an ansatz solution that can be straightforwardly interpreted as the “quantum wave function” of the 4-spinor solution of Dirac’s equation. All quantum features arise from the subtle interplay between the conformal curvature acting on the particle as a potential and the particle motion which affects the geometric “pre-potential” associated to the conformal curvature itself. The theory, carried out here by assuming a Minkowski metric, can be easily extended to arbitrary space-time Riemann metric, e.g. the one adopted in the context of General Relativity. This novel theoretical scenario appears to be of general application and is expected to open a promising perspective in the modern endeavor aimed at the unification of the natural forces with gravitation.  相似文献   

19.
We derive a stationary spherically symmetric vacuum solution in the framework of the Poincaré gauge field theory with a recently proposed quadratic lagrangian. We find a metric of the Schwarzschild-de Sitter type, both torsion and curvature are non vanishing, with torsion proportional to the mass and curvature proportional to the strong coupling constant κ. The metric exhibits two pieces, a newtonian potential describing the gravitational behavior of macroscopic matter, and a confining potential ~κr2 presumably related to the strong-interaction properties of hadrons. To our knowledge this is a new feature of a classical solution of a Yang-Mills type gauge theory.  相似文献   

20.
An exact de Sitter solution of scalar-tensor gravity is found in our recent work, in which the non-minimal coupling scalar is rolling along a non-constant potential. Based on this solution, a dust-filled FRW universe is explored in frame of scalar-tensor gravity in this article. The effective dark energy induced by the sole non-minimal scalar can be quintessence-like, phantom-like, and more significantly, can cross the phantom divide. The rich and varied properties of scalar-tensor gravity even with only one scalar is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号