首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. N. Chaika 《JETP Letters》2014,99(12):731-741
Scanning tunneling microscopy (STM) is one of the main techniques for direct visualization of the surface electronic structure and chemical analysis of multi-component surfaces at the atomic scale. This review is focused on the role of the tip orbital structure and tip-surface interaction in STM imaging with picometer spatial resolution. Fabrication of STM probes with well-defined structure and selective visualization of individual electron orbitals in the STM experiments with controlled tunneling gap and probe structure are demonstrated.  相似文献   

2.
The structure of the Cu(410)-O surface is studied by a scanning tunneling microscope (STM) with atomic resolution. Tunneling is accomplished for various states of the tungsten STM probe, which allows oxygen and copper atoms to be visualized separately.  相似文献   

3.
We report the use of single quantum dot structures as tips on a scanning tunneling microscope (STM). A single quantum dot structure with a diameter of less than 200 nm and a height of 2 μm was fabricated by reactive ion etching. This dot was placed on a 40 μm-high mesa and mounted on the tip of a STM. The topography of large structures such as quantum wires or gold test substrates is clearly resolved with such a tip. To check the transport properties of the tip, quantum dot arrays were fabricated on resonant tunneling double barrier structures using the same process parameters. Conventional tunneling spectroscopy clearly resolved the 0D states in our samples. Using a metal substrate as second electrode such STM tips can be used to perform high resolution energy spectroscopy on single dots and free standing wire structures.  相似文献   

4.
《Surface science》1994,321(3):L195-L201
Myoglobin molecules were deposited on a surfactant sodium dodecyl sulfate modified HOPG surface and imaged in air with a high resolution scanning tunneling microscope (STM) for the first time. STM images exhibit not only ordered arrays of the surfactant molecules but also regular two-dimensional arrays of myoglobin molecules. From STM images, the myoglobin molecule can be described as an ellipsoid-shaped pattern for the tertiary structure. In this study the dimensions of a myoglobin molecule were determined approximately as 43.0 × 36.2 × 8 Å3, which are in good agreement with the known data from X-ray analysis, except for the height of a molecule which cannot be estimated from STM.  相似文献   

5.
The fascinating many-body physics involved in the interaction of a single magnetic impurity with the conduction electrons of its nonmagnetic metallic host is reflected in unconventional phenomena in magnetism, transport properties and the specific heat. Characteristic low-energy excitations, termed the Kondo resonance, are generally believed to be responsible for this striking behaviour. However, in spite of an intense research for over more than 30 years, a direct spectroscopic observation of the Kondo resonance on individual magnetic adatoms withstood experimental efforts hitherto. The development of low-temperature scanning tunneling microscopes (STM) operating under ultrahigh vacuum (UHV) conditions has provided new opportunities for investigating locally the electronic structure at surfaces. At low temperatures, due to the reduced broadening of the Fermi level of the STM tip and the sample, rather high energy resolution (≤ 1 meV) in scanning tunneling spectroscopy (STS) is achievable. Moreover, the absence of diffusion together with the spatial resolution of the STM enables detailed studies of electronic states on and near single adsorbed atoms and other nanoscale structures. Recently, for the first time, two such STS/STM experiments spatially resolved the electronic properties of individual magnetic adatoms displaying the Kondo effect. In particular, the observed Fano lineshape of the Kondo resonance reveals unambiguously the details of the quantum mechanical interference between the localized orbital and the conduction electrons on an atomic length scale [1,2]. This achievement of the detection of individual magnetic atoms with atomic resolution opens new perspectives for probing magnetic nanostructures.  相似文献   

6.
潘明虎  薛其坤 《物理》2002,31(12):800-804
自旋极化扫描隧道显微术是一种新兴的表面自旋分辨技术,文章主要介绍了自旋极化的扫描隧道显微镜和扫描隧道谱实现表面自旋分辨的原理以及在各种磁性表面研究中的应用,采用自旋极化技术的扫描隧道显微镜可以测量表面磁结构,其空间分辨可以达到原子尺度,分辨率超过其他磁显微技术,而自旋极化扫描隧道谱不但可以分辨空间精细磁畴结构,而且能研究表面态的交换劈裂,文章作者还进一步提出了利用自旋极化扫描隧道显微镜实现自旋注入的设想。  相似文献   

7.
The development of a method for exploring the ultrafast transient dynamics in small organized structures with high spatial resolution is expected to be a basis for further advances in current science and technology. Recently, we have developed a new microscopy technique by combining scanning tunneling microscopy (STM) with ultrashort-pulse laser technology, which enables the visualization of ultrafast carrier dynamics even on the single-atomic level. A nonequilibrium carrier distribution is generated using ultrashort laser pulses and its relaxation processes are probed by STM using the optical pump-probe method realized in STM by the pulse-picking technique. In this paper, the fundamentals of the new microscopy technique are overviewed.  相似文献   

8.
The formation of the c(6 × 2)−O phase on a Cu(110) surface, after completion of the (2 × 1)−O structure, was observed by scanning tunneling microscopy (STM). The phase is composed of isotropic structural elements on fourfold hollow sites of the substrate lattice, which form a quasi-hexagonal array and manifest themselves as large protrusions in the STM images. Individual units of this type are mobile and also represent stable nuclei within a (2 × 1) surrounding. Nucleation is activated and occurs preferentially at steps, in contrast to previous findings with the (2 × 1) phase. Structural implications of additional weak features in high resolution images and of the observed change in two-dimensional density of Cu atoms are discussed.  相似文献   

9.
In this paper we simulate STM and STS experiments for CO monomers and dimers on Cu(1 1 1) surface. We show that the contrast of STM images can be attributed to interference effects between tunneling channels, and suggest that functionalizing the microscope tip improves the channel selectivity of STM. Furthermore, we show that voltage and position dependent tunneling spectra also reflect the same interference effects, but adds the energy resolution to the channel analysis. Especially in the case of nonresonant tunneling, STS measures local density of states only indirectly. The present study suggests that STS in constant height mode can be used in investigating the phase and energy sensitivity of tunneling channels in adsorbate molecules and nanostructures.  相似文献   

10.
Inelastic electron tunneling spectroscopy (IETS) performed with the scanning tunneling microscope (STM) has been deemed as the ultimate tool for identifying chemicals on the atomic scale. However, IETS-based chemical analysis is error-prone due to the numerous degrees of freedom of chemisorbed molecular systems. First-principles simulations of IETS are presented that, by quantitative comparison with the experimental spectra, permit one to determine the final products of an STM-induced reaction on chemisorbed benzene. Our simulations reveal that IETS possesses an enhanced sensitivity to atomic structure as compared to topographic imaging due to both its energy and space resolution.  相似文献   

11.
《Surface science》1994,314(3):L884-L888
The morphology and the electronic structure of heteroepitaxial germanium layers grown pseudomorphically by solution epitaxy on Si(001) has been investigated by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). A significant decrease of tunneling current at a sample voltage of 1.5 V is observed in areas of 0.5 nm diameter between dimer rows. This decrease is due to a negative-differential conductivity at a tunnel diode configuration consisting of a surface defect structure of the germanium layer and the STM tungsten tip.  相似文献   

12.
The self-assembly of ω-ferrocenylalkanethiols (FcCnSH) with different alkyl-spacer lengths on Au(1 1 1) substrates has been studied by scanning tunneling microscopy (STM). Upon deposition at room temperature FcCnSH molecules tend to form multilayers, while by thermal treatment monolayer formation, a rearrangement of the molecules and the formation of ordered domains is achieved. The surface structure of the resulting full coverage self-assembled monolayers is resolved with molecular resolution by STM. The ordered monolayer structure of ω-ferrocenylpropanethiol is discussed in comparison with its bulk crystal structure, derived from single crystal X-ray analysis. Based on these results a monolayer structure of ω-ferrocenylalkanethiols with longer alkyl chains closely related to the bulk crystal structure of the shorter alkyl-spacer derivates is suggested. Our results provide detailed insight into the self-assembly of FcCnSH on gold substrates.  相似文献   

13.
Size-selected iron and iron–cobalt alloy clusters have been studied with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). The clusters were produced by a continuously working arc cluster ion source and subsequently size-selected by an electrostatic quadrupole deflector. The crystalline structure of pure clusters has been investigated with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The composition of the alloy clusters was checked with energy dispersive X-ray spectroscopy (EDX). The height of the deposited FeCo clusters on the (110) surface of tungsten was determined via STM. These results were compared with the lateral size distribution being investigated by TEM and allow a conclusion on the shape of the deposited alloy clusters. Furthermore, the behavior of the alloy clusters on the W(110) surface at elevated temperatures has been examined, at which the clusters show anisotropic spreading.  相似文献   

14.
The morphology of and electron tunneling through single and cluster cytochrome c molecules deposited on self-assembled dodecanthiol monolayer film on a gold substrate have been studied experimentally using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. STM images of a single cytochrome c molecule revealed a globular structure with a diameter of 4 nm and height of 1.5 nm. A spectroscopic study obtained by recording tunneling current–bias voltage (VI) curves revealed that the STM current increases stepwise at asymmetric threshold sample bias voltages of +100 mV and –200 mV.  相似文献   

15.
杨景景  杜文汉 《中国物理 B》2013,22(6):66801-066801
An Sr/Si(100)-c(2×4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The semiconductor property of this surface is confirmed by STS. The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V. Furthermore, one-dimensional (1D) diffusion of vacancies can be found in the room-temperature STM images. Sr vacancies diffuse along the valley channels, which are constructed by silicon dimers in the surface. Weak interaction between Sr and silicon dimers, low metal coverage, surface vacancy, and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion.  相似文献   

16.
The Si(001) surface subjected to different treatments in ultrahigh vacuum molecular beam epitaxy chamber for SiO2 film decomposition has been in situ investigated by reflected high energy electron diffraction (RHEED) and high resolution scanning tunneling microscopy (STM). A transition between (2 × 1) and (4 × 4) RHEED patterns was observed. The (4 × 4) pattern arose at T ≤ 600°C during the post-treatment cooling of the sample. The reconstruction was observed to be reversible. The c(8 × 8) structure has been revealed by STM at room temperature on the same samples. The (4 × 4) patterns have been evidenced to be a manifestation of the c(8 × 8) surface structure in RHEED. The phase transition appearance has been found to depend on thermal treatment conditions and sample cooling rate.  相似文献   

17.
Journal of Experimental and Theoretical Physics - Scanning tunneling microscopy (STM) is a fundamental tool for determination of the surface atomic structure. However, the interpretation of high...  相似文献   

18.
Scanning tunneling microscopy (STM) is not only an excellent tool for the study of static geometric structures and electronic structures of surfaces due to its high spatial and energy resolution, but also a powerful tool for the study of surface dynamic behaviors, including surface diffusion, molecular rotation, and surface chemical reactions. Because of the limitation of the scanning speed, the video-STM technique cannot study the fast dynamic processes. Alternatively, a time-dependent tunneling current, I-t curve, method is employed in the research of fast dynamic processes. Usually, this method can detect about 1000 times faster dynamic processes than the traditional video-STM method. When placing the STM tip over a certain interesting position on the sample surface, the changing of tunneling current induced by the surface dynamic phenomena can be recorded as a function of time. In this article, we review the applications of the time-dependent tunneling current method to the studies of surface dynamic phenomena in recent years, especially on surface diffusion, molecular rotation, molecular switching, and chemical reaction.  相似文献   

19.
Scanning tunneling microscopy (STM) and density-functional theory are used to reexamine the structure of the renowned p(4 x 4)-O/Ag(111) surface oxide. The accepted structural model [C. I. Carlisle, Phys. Rev. Lett. 84, 3899 (2000)10.1103/PhysRevLett.84.3899] is incompatible with the enhanced resolution of the current STM measurements. An "Ag6 model" is proposed that is more stable than its predecessor and accounts for the coexistence of the p(4 x 4) and a novel c(3 x 5log3)rect phase. This coexistence is an indication of the dynamic complexity of the system that until now has not been appreciated.  相似文献   

20.
The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+/-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号