首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Coherent deterministic arrival times can be extracted from the derivative of the time-averaged ambient noise cross-correlation function between two receivers. These coherent arrival times are related to those of the time-domain Green's function between these two receivers and have been observed experimentally in various environments and frequency range of interest (e.g., in ultrasonics, seismology, or underwater acoustics). This nonintuitive result can be demonstrated based on a simple time-domain image formulation of the noise cross-correlation function, for a uniform distribution of noise sources in a Pekeris waveguide. This image formulation determines the influence of the noise-source distribution (in range and depth) as well as the dependence on the receiver bandwidth for the arrival-time structure of the derivative of the cross-correlation function. These results are compared with previously derived formulations of the ambient noise cross-correlation function. Practical implications of these results for sea experiments are also discussed.  相似文献   

2.
The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs.  相似文献   

3.
The effect of spatial separation on the ability of human listeners to resolve a pair of concurrent broadband sounds was examined. Stimuli were presented in a virtual auditory environment using individualized outer ear filter functions. Subjects were presented with two simultaneous noise bursts that were either spatially coincident or separated (horizontally or vertically), and responded as to whether they perceived one or two source locations. Testing was carried out at five reference locations on the audiovisual horizon (0 degrees, 22.5 degrees, 45 degrees, 67.5 degrees, and 90 degrees azimuth). Results from experiment 1 showed that at more lateral locations, a larger horizontal separation was required for the perception of two sounds. The reverse was true for vertical separation. Furthermore, it was observed that subjects were unable to separate stimulus pairs if they delivered the same interaural differences in time (ITD) and level (ILD). These findings suggested that the auditory system exploited differences in one or both of the binaural cues to resolve the sources, and could not use monaural spectral cues effectively for the task. In experiments 2 and 3, separation of concurrent noise sources was examined upon removal of low-frequency content (and ITDs), onset/offset ITDs, both of these in conjunction, and all ITD information. While onset and offset ITDs did not appear to play a major role, differences in ongoing ITDs were robust cues for separation under these conditions, including those in the envelopes of high-frequency channels.  相似文献   

4.
A new computational system for the environmental noise measurement and analysis has been developed. The system consists of binaural microphones, a laptop PC, and analysing software. A target noise is recorded automatically depending on the specified background noise level, and the acoustical parameters are calculated simultaneously. These functions allow for precise field measurements. The system is equipped with a template-matching algorithm for the identification of noise source. This function was implemented to avoid the effect of an interrupting sound such as voice and wind blowing during a measurement. Noise analyses in this system are based on the model of human auditory system. In addition to the time-series data of sound level, the important acoustical parameters of noise source are extracted from the running autocorrelation function (ACF) and the inter-aural cross-correlation function (IACF). It has been found that those parameters are strongly related to the auditory primary sensations and spatial sensations. Evaluation of the environmental noise based on these functions is another feature of this system. This paper describes the effectiveness of the ACF and the IACF analysis for analysing acoustical properties of noise and for evaluating the subjective response to noise.  相似文献   

5.
An acoustic pointing task was used to determine whether interaural temporal disparities (ITDs) conveyed by high-frequency "transposed" stimuli would produce larger extents of laterality than ITDs conveyed by bands of high-frequency Gaussian noise. The envelopes of transposed stimuli are designed to provide high-frequency channels with information similar to that conveyed by the waveforms of low-frequency stimuli. Lateralization was measured for low-frequency Gaussian noises, the same noises transposed to 4 kHz, and high-frequency Gaussian bands of noise centered at 4 kHz. Extents of laterality obtained with the transposed stimuli were greater than those obtained with bands of Gaussian noise centered at 4 kHz and, in some cases, were equivalent to those obtained with low-frequency stimuli. In a second experiment, the general effects on lateral position produced by imposed combinations of bandwidth, ITD, and interaural phase disparities (IPDs) on low-frequency stimuli remained when those stimuli were transposed to 4 kHz. Overall, the data were fairly well accounted for by a model that computes the cross-correlation subsequent to known stages of peripheral auditory processing augmented by low-pass filtering of the envelopes within the high-frequency channels of each ear.  相似文献   

6.
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/- 120 micros range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.  相似文献   

7.
This article discusses the effect of frequency bandwidth on the maximum absolute value of interaural cross-correlation coefficient (IACC) in relation to sound image width (also known as auditory source width, ASW). Subjective experiments concerning sound image width were performed using reproduced sounds of a violin. This article shows that separation into 1/24 and more octave bands and averaging IACC values of these frequency bands leads to a higher correlation to sound image width than IACC in broader frequency bands. Moreover the average of 1/n octave bands of the temporal deviation of interaural time differences and interaural level differences could be confirmed as measures correlating with sound image width.  相似文献   

8.
Three experiments investigated the roles of interaural time differences (ITDs) and level differences (ILDs) in spatial unmasking in multi-source environments. In experiment 1, speech reception thresholds (SRTs) were measured in virtual-acoustic simulations of an anechoic environment with three interfering sound sources of either speech or noise. The target source lay directly ahead, while three interfering sources were (1) all at the target's location (0 degrees,0 degrees,0 degrees), (2) at locations distributed across both hemifields (-30 degrees,60 degrees,90 degrees), (3) at locations in the same hemifield (30 degrees,60 degrees,90 degrees), or (4) co-located in one hemifield (90 degrees,90 degrees,90 degrees). Sounds were convolved with head-related impulse responses (HRIRs) that were manipulated to remove individual binaural cues. Three conditions used HRIRs with (1) both ILDs and ITDs, (2) only ILDs, and (3) only ITDs. The ITD-only condition produced the same pattern of results across spatial configurations as the combined cues, but with smaller differences between spatial configurations. The ILD-only condition yielded similar SRTs for the (-30 degrees,60 degrees,90 degrees) and (0 degrees,0 degrees,0 degrees) configurations, as expected for best-ear listening. In experiment 2, pure-tone BMLDs were measured at third-octave frequencies against the ITD-only, speech-shaped noise interferers of experiment 1. These BMLDs were 4-8 dB at low frequencies for all spatial configurations. In experiment 3, SRTs were measured for speech in diotic, speech-shaped noise. Noises were filtered to reduce the spectrum level at each frequency according to the BMLDs measured in experiment 2. SRTs were as low or lower than those of the corresponding ITD-only conditions from experiment 1. Thus, an explanation of speech understanding in complex listening environments based on the combination of best-ear listening and binaural unmasking (without involving sound-localization) cannot be excluded.  相似文献   

9.
In a test sound consisting of a burst of pink noise, an arbitrarily selected target frequency band can be "enhanced" by the previous presentation of a similar noise with a spectral notch in the target frequency region. As a result of the enhancement, the test sound evokes a pitch sensation corresponding to the pitch of the target band. Here, a pitch comparison task was used to assess enhancement. In the first experiment, a stronger enhancement effect was found when the test sound and its precursor had the same interaural time difference (ITD) than when they had opposite ITDs. Two subsequent experiments were concerned with the audibility of an instance of dichotic pitch in binaural test sounds preceded by precursors. They showed that it is possible to enhance a frequency region on the sole basis of ITD manipulations, using spectrally identical test sounds and precursors. However, the observed effects were small. A major goal of this study was to test the hypothesis that enhancement originates at least in part from neural adaptation processes taking place at a central level of the auditory system. The data failed to provide strong support for this hypothesis.  相似文献   

10.
A numerical experiment is carried out to demonstrate the reconstruction of the frequency spectrum of background internal waves with the use of the correlation method for measuring the frequency shifts of interference maxima. The method is based on monitoring the behavior of the frequency shift for the maximum of the cross-correlation function of signal spectra received at different instants of time. The noise immunity of the correlation method is analyzed in comparison with the direct method based on monitoring the frequency shift of a chosen maximum of the interference pattern.  相似文献   

11.
The precedence effect (PE) describes the ability to localize a direct, leading sound correctly when its delayed copy (lag) is present, though not separately audible. The relative contribution of binaural cues in the temporal fine structure (TFS) of lead-lag signals was compared to that of interaural level differences (ILDs) and interaural time differences (ITDs) carried in the envelope. In a localization dominance paradigm participants indicated the spatial location of lead-lag stimuli processed with a binaural noise-band vocoder whose noise carriers introduced random TFS. The PE appeared for noise bursts of 10 ms duration, indicating dominance of envelope information. However, for three test words the PE often failed even at short lead-lag delays, producing two images, one toward the lead and one toward the lag. When interaural correlation in the carrier was increased, the images appeared more centered, but often remained split. Although previous studies suggest dominance of TFS cues, no image is lateralized in accord with the ITD in the TFS. An interpretation in the context of auditory scene analysis is proposed: By replacing the TFS with that of noise the auditory system loses the ability to fuse lead and lag into one object, and thus to show the PE.  相似文献   

12.
钟小丽  谢菠荪 《应用声学》2012,31(6):410-415
虚拟听觉重放采用头相关传输函数(HRTF)合成双耳声信号,并用耳机重放,以产生所需的空间听觉事件。理想的虚拟听觉重放需要个性化HRTF。个性化HRTF可通过实验测量或数值计算相对地准确获得。然而,测量每个潜在使用者的高空间分辨率HRTF是困难的,而数值计算HRTF的频段往往受限于计算机性能。近年发展了多种HRTF的近似获取方法,并成为热门研究课题,但效果有待验证和提高。本文评述了个性化HRTF近似的研究进展,指出了存在的问题和今后的方向。  相似文献   

13.
提出一种分析头相关传输函数(head-related transfer function,HRTF)幅度谱的听觉空间分辨阈值模型。采用数值计算得到的高空间分辨率HRTF数据,计算了声源空间位置变化引起的HRTF幅度谱的变化,进一步利用Moore响度模型分析双耳响度级差、双耳响度级谱和总响度级等三个听觉感知量的变化。根据现有的3个听觉感知量最小可察觉差异,模型利用双耳响度级差和双耳响度级谱的变化得到的估计结果与心理声学实验一致,因此是一种有效预测听觉空间分辨阈值的方法,可用于为简化虚拟听觉信号处理和数据储存。   相似文献   

14.
Selected subjects with bilateral cochlear implants (CIs) showed excellent horizontal localization of wide-band sounds in previous studies. The current study investigated localization cues used by two bilateral CI subjects with outstanding localization ability. The first experiment studied localization for sounds of different spectral and temporal composition in the free field. Localization of wide-band noise was unaffected by envelope pulsation, suggesting that envelope-interaural time difference (ITD) cues contributed little. Low-pass noise was not localizable for one subject and localization depended on the cutoff frequency for the other which suggests that ITDs played only a limited role. High-pass noise with slow envelope changes could be localized, in line with contribution of interaural level differences (ILDs). In experiment 2, processors of one subject were raised above the head to void the head shadow. If they were spaced at ear distance, ITDs allowed discrimination of left from right for a pulsed wide-band noise. Good localization was observed with a head-sized cardboard inserted between processors, showing the reliance on ILDs. Experiment 3 investigated localization in virtual space with manipulated ILDs and ITDs. Localization shifted predominantly for offsets in ILDs, even for pulsed high-pass noise. This confirms that envelope ITDs contributed little and that localization with bilateral CIs was dominated by ILDs.  相似文献   

15.
The efficiency of the correlation method is considered as applied to measuring frequency shifts of maxima in the interference structure of the sound speed under the influence of distortions of the sound-speed profile. The method is based on tracing the position of the maximum of the cross-correlation function corresponding to the spectrum of the transmitted signal in the frequency domain. The distortion is modeled by seasonal variations of the hydrological environment. The noise immunity of the method is analyzed. The correlation method is compared with other known methods of tracing frequency shifts of the interference maxima.  相似文献   

16.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

17.
Western Atlantic sciaenids comprise a taxonomically diverse teleost family with significant variations in the relationship between the swim bladder and the otic capsule. In this study, the auditory brainstem response (ABR) was used to test the hypothesis that fishes with different peripheral auditory structures (black drum, Pogonias chromis and Atlantic croaker, Micropogonias undulatus) show differences in frequency selectivity. In a black drum the swim bladder is relatively distant from the otic capsule while the swim bladder in Atlantic croaker possesses anteriorly-directed diverticulas that terminate relatively near the otic capsule. Signals were pure tones in the frequency range, 100 Hz to 1.5 kHz, and thresholds were determined both with and without the presence of simultaneous white noise at two intensity levels (124 dB and 136 dB, re: 1 microPa). At the 124 dB level of white noise background, both the black drum and Atlantic croaker showed similar changes in auditory sensitivity. However, in the presence of the 136 dB white noise masker, black drum showed significantly greater shifts in auditory thresholds between 300 and 600 Hz. The results indicate that the two species differ in frequency selectivity since the Atlantic croaker was less susceptible to auditory threshold shifts, particularly at the higher level of masking. This difference may be linked to peripheral auditory mechanisms.  相似文献   

18.
The effects of broadband noise on the brain-stem auditory evoked response (BAER) are reported for two experiments. Experiment 1 used a high-pass subtractive-masking technique and covaried derived bandwidth and continuous broadband noise level. Comparison of responses to half-octave wide derived bands in the presence of within-band noise showed that wave V latency changes were greater than could be explained on the basis of shifts in the cochlear region responsible for generating the response. The magnitude of within-band noise-induced wave V latency shift was independent of the frequency separation of the masker cutoffs. In experiment 2 the effects of noise level and rate on waves I, III, and V of the BAER were evaluated. Peak latencies increased and peak amplitudes decreased with increasing noise level and rate. Higher noise levels and rates produced an increased central (I-V) conduction time in which the wave III-V increase was greater than the wave I-III increase. Together, these results are most consistent with the hypothesis that a nonplace, central auditory mechanism produces most of the noise-induced latency shifts in normal-hearing adults.  相似文献   

19.
The possibility of selecting modes that propagate between two spaced observation points without the use of vertical arrays and low-frequency emitters is considered. Modes are selected from the cross-correlation function of noise received by single hydrophones. It is shown that modes at frequencies near the minima of the dispersion dependences of their group velocities, where stationary phase regions are observed, make the main contribution to the noise cross-correlation function. This makes it possible to identify modes of different numbers and estimate their propagation times between hydrophones, which can be the basis for shallow-water passive mode tomography using data from single bottom hydrophones. The modes were selected based on data from a experiment carried out in the Barents Sea.  相似文献   

20.
The potential of spherical-harmonics beamforming (SHB) techniques for the auralization of target sound sources in a background noise was investigated and contrasted with traditional head-related transfer function (HRTF)-based binaural synthesis. A scaling of SHB was theoretically derived to estimate the free-field pressure at the center of a spherical microphone array and verified by comparing simulated frequency response functions with directly measured ones. The results show that there is good agreement in the frequency range of interest. A listening experiment was conducted to evaluate the auralization method subjectively. A set of ten environmental and product sounds were processed for headphone presentation in three different ways: (1) binaural synthesis using dummy head measurements, (2) the same with background noise, and (3) SHB of the noisy condition in combination with binaural synthesis. Two levels of background noise (62, 72 dB SPL) were used and two independent groups of subjects (N=14) evaluated either the loudness or annoyance of the processed sounds. The results indicate that SHB almost entirely restored the loudness (or annoyance) of the target sounds to unmasked levels, even when presented with background noise, and thus may be a useful tool to psychoacoustically analyze composite sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号