共查询到20条相似文献,搜索用时 93 毫秒
1.
1. It has been shown that maleic, fumaric, benzoic, phthalic and salicylic acids can be oxidized completely to carbon dioxide and water by ceric sulphate in the presence of concentrated sulphuric acid. 2. These acids can be estimated quantitatively by the use of ceric sulphate. 3. Acetic and succinic acids are not oxidized by ceric sulphate even in the presence of high concentrations of sulphuric acid. 相似文献
2.
3.
The Raman spectrum of bis(tetramethylcyclo-octatetraene)uranium (U(TMCOT)2), excited in resonance with its visible charge-transfer transitions shows an anomalously polarized electronic band at 473 cm?1, twice as broad as the analogous band of uranocene, at 466 cm?1. The broadening is attributed to crystal-field splitting associated with the lowered symmetry introduced by the methyl group, and/or a distribution of rotamer populations. Totally symmetric vibrational modes are observed at 879, 750, 580, 513 and 95 cm?1; possible assignments are discussed. 相似文献
4.
Toshiaki Murai Atsushi Shimizu Shji Tatematsu Kazuhiko no Takahiro Kanda Shinzi Kato 《Heteroatom Chemistry》1994,5(1):31-35
Reactions of SeCl4 with lithium bis(trimethylsilyl)amide and terminal acetylenes in the presence of BuLi or AIBN afforded the corresponding dialkynyl selenides in moderate to high yields. The reaction may proceed via a selenium amide 7 and an alkynyl selenium amide 8 . The comparison of 13C NMR spectra of dialkynyl selenides and tellurides has disclosed that the differences of the chemical shift of acetylenic carbons between Se and Te derivatives are consistent regardless of their substitution patterns. Ab initio molecular orbital calculations are reported for dialkynyl ether and chalcogenides. The calculated structures, charge distributions, and orbital energies are discussed. 相似文献
5.
The experimental IR and Raman spectra of ethylene oxide have been reinvestigated with particular attention to the intensities. The absolute IR intensities have been measured for the gaseous state. The spectra have been simulated by using a normal coordinate analysis coupled with a CNDO determination of the intensities. The intensity calculation using polarization functions appears to be more reliable than the standard version. Furthermore, the force field has been extended for ethylene sulfide. 相似文献
6.
Ab initio, quantum chemical methods have been used to develop an interaction model for the binding of benzoic and salicylic acids and phenols to cyclooxygenase, leading to their antiinflammatory action. The model is based on a regression analysis of the energy of the highest occupied molecular orbital with the potency of the active substances to inhibit prostaglandin production in mouse macrophages and on an analysis of the frontier orbital charge distributions and electrostatic potentials of active and inactive compounds. The model suggests that binding is controlled by an electrostatic orientational factor and a charge transfer or polarization contribution. The observed relative potencies of the phenols and acids can be rationalized with the help of the proposed interaction model. 相似文献
7.
Al-Saadi AA Laane J 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,71(2):326-331
The structural properties of 2,3-cyclopentenopyridine (pyrindan) have been investigated using several spectroscopic and computational techniques. The Raman and infrared spectra of the molecule have been recorded and a full vibrational assignment was proposed on the basis of experimental and theoretical results. The vapor-phase Raman spectrum was successfully obtained at 260 degrees C without sample decomposition. Density functional theory (DFT) and M?ller-Plesset (MP2) calculations predict that the presence of the nitrogen atom in the six-membered ring has almost no effect on the barrier to inversion (587 cm(-1)) and puckering frequency (139 cm(-1)) as compared to the values previously determined (488 cm(-1) and 143 cm(-1)) for the indan molecule. 相似文献
8.
Gamil A. Guirgis Stephen Bell James R. Durig 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》1996,52(14):1861-1873
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state. 相似文献
9.
B. J. van der Veken R. S. Sanders J. Xiao J. R. Durig 《Journal of Molecular Structure》2001,560(1-3):57-86
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations. 相似文献
10.
《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》1994,50(3):383-397
The Raman spectra (3200–100 cm−1) of epifluorohydrin, OCH2CH(CH2F), in variable solvents, as well as that of the gas have been recorded and several of the bands due to the two less stable conformers have been identified. The variable solvent studies were inconclusive on the relative conformer stabilities. The conformational energy differences and optimized geometries for all three conformers have been obtained from ab initio calculations with the 3–21G, 4–31G and 6–31G* basis sets. A normal coordinate analysis has also been performed for each conformer with a force field determined from the 3–21G basis set. Assignment of the vibrational fundamentals observed in the Raman spectra of the fluid phases is proposed based on the normal coordinate calculations. In the liquid phase, one of the conformers with a large dipole moment predominates and it appears to be the gauche-I form which is the only one found in the solid. Utilizing the three rotational constants previously reported for each conformer, along with restricted relative distances for several of the structural parameters among the conformers from ab initio calculations, r0 structural parameters for the heavy atoms have been determined. 相似文献
11.
Zhu G Zhu X Fan Q Wan X 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,78(3):1187-1195
Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids (L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials. 相似文献
12.
Karabacak M Cinar Z Kurt M Sudha S Sundaraganesan N 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2012,85(1):179-189
The solid phase FTIR and FT-Raman spectra of 4-butyl benzoic acid (4-BBA) have been recorded in the regions 400-4000 and 50-4000cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for monomer and dimer by DFT method and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. (13)C and (1)H NMR spectra were recorded and (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded in the region 200-400nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. The geometric parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, chemical shifts and absorption wavelengths were compared with the available experimental data of the molecule. 相似文献
13.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue. 相似文献
14.
《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》1984,40(8):739-750
The i.r. spectra (3500-40 cm−1) of gaseous and solid ethylisothiocyanate, CH3CH2NCS, and ethylisothiocyanate-d5, CD3CD2NCS, and the Raman spectra (3200-10 cm−1) of the liquids and solids have been recorded. Additionally, the i.r. spectrum of matrix (N2) isolated CH3CH2NCS was recorded from 3500 to 200 cm−1. The vibrational spectra have been interpreted on the basis of a cis form of Cs symmetry for all three physical states; however, in the spectum of the matrix isolated sample at 10 K, several of the fundamentals are doublets which may be arising from two conformers at this temperature. A vibrational assignment is given based on i.r. band contours, depolarization values, isotopic shifts and group frequencies. The assignment is supported by the Teller—Redlich product ratios. The methyl torsion was observed at 270 cm−1 in the solid phase which gives a periodic barrier of 4.7 kcal/mole. A normal coordinate calculation has been carried out utilizing a modified valence force field consisting of 15 diagonal force constants and seven interaction terms which reproduced the observed frequencies with an error of 1.45% for the -d0 molecule and 3.40% for the -d5 compound. Because of the large CNC angle (∼ 145°) and low barrier to internal rotation of the asymmetric rotor, the skeletal bend and torsion couple to give a very broad band with two maxima and apparent P band heads. These results are compared to corresponding studies of similar molecules. 相似文献
15.
Durig JR Zhu X Guirgis GA 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2004,60(4):829-841
The infrared spectra (3500-50 cm-1) of gas and solid and the Raman spectrum (3500-50 cm-1) of liquid 2-fluorobutane, CH3CHFCH2CH3, have been recorded. Variable temperature studies over the range -105 to -150 degrees C of the infrared spectra (3500-400 cm-1) of the sample dissolved in liquid krypton have also been recorded. By utilizing the relative intensities of six conformer pairs each for both Me-trans/F-trans and Me-trans/H-trans, the Me-trans conformer is found to be the lowest energy form with an enthalpy difference to the F-trans conformer of 102 +/- 10 cm-1 ( 1.21+/- 0.12 kJmol-1) whereas the H-trans conformer is the highest energy form with an enthalpy difference of 208 +/- 21 cm-1 ( 2.49 +/- 0.25 kJmol-1) higher than the Me-trans form. At ambient temperature, it is estimated that there is 50 +/- 2% of the Me-trans form, 31 +/- 1% of the F-trans form, and 19 +/- 1% of the H-trans conformer present. Equilibrium geometries and total energies of the three conformers have been determined by ab initio calculations with full electron correlation by the perturbation method to second order using a number of basis sets. A complete vibrational assignment is proposed for the Me-trans conformer and many of the fundamentals have been identified for the other two forms based on the force constants, relative infrared and Raman intensities, and depolarization ratios obtained from MP2/6-31Gd ab initio calculations. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules. 相似文献
16.
Carol E. Parker Maurice M. Bursey Lee G. Pedersen 《Journal of mass spectrometry : JMS》1974,9(2):204-210
An aspect of the mechanism of the hydroxyl H/ortho H scrambling in the molecular ion of benzoic acid was studied by the open-shell INDO molecular orbital method. Energies of te unrearranged structure, the planar structure in which H is attached to carbonyl oxygen and rotational conformers of the latter were studied to determine a pathway of minimum energy for rotation. The same calculations were made for salicylic acid, m-fluorobenzoic acid and p-fluorobenzoic acid. The results of these calculations agree quite well with experimental results. 相似文献
17.
Tabrizi MZ Tayyari SF Tayyari F Behforouz M 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2004,60(1-2):111-120
FT Raman and FTIR spectra of Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its deuterated analogue are recorded. Comparison between the spectra obtained by two techniques, a series of density functional theory (DFT) calculations and the spectral behavior upon deuteration were used for the assignment of the vibrational spectra of this compound. The calculated vibrational frequencies by the B3LYP, B3PW91, G96LYP, G96P86, and MPWLYP density functionals are generally consistent with the observed spectra. Infrared and Raman vibrational transitions predicted by B3LYP/6-311++G** are reported for the titled compound and its deuterated analogous and the assignments are discussed. All experimental and theoretical results support a relatively weak hydrogen bond in naphthazarin (NZ), compared with that in the enol form of normal beta-diketones. The observed nuOH/nuOD and gammaOH/gammaOD appear at about 3060/2220 and 790/560 cm(-1), respectively, which are consistent with the calculated hydrogen bond geometry and proton chemical shift results. Two bands at about 350 and 290 cm(-1) are assigned to the O...O stretching modes belong to A1 and B2 species, respectively. 相似文献
18.
Brady C Callaghan PL Ciunik Z Coates CG Døssing A Hazell A McGarvey JJ Schenker S Toftlund H Trautwein AX Winkler H Wolny JA 《Inorganic chemistry》2004,43(14):4289-4299
The spin-crossover system [Fe(btpa)](PF(6))(2) (btpa = N,N,N',N'-tetrakis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'-bipyridine) and the predominantly low-spin species [Fe(b(bdpa))](PF(6))(2) ((b(bdpa) = N,N'-bis(benzyl)-N,N'-bis(2-pyridylmethyl)-6,6'-bis(aminomethyl)-2,2'-bipyridine) have been characterized by means of X-ray diffraction. The unit cell of [Fe(btpa)](PF(6))(2) contains two crystallographically independent molecules revealing octahedral low-spin and quasi-seven-coordinated high-spin structures. The unit cell of [Fe(b(bdpa))](PF(6))(2) contains two crystallographically independent molecules one of which corresponds to a low-spin structure, while the other reveals a disordering. On the basis of magnetic susceptibility and M?ssbauer measurements, it has been proposed that this disorder involves low-spin and high-spin six-coordinated molecules. The structures of [Zn(btpa)](PF(6))(2) and [Ru(btpa)](PF(6))(2) have been determined also. Pulsed laser photoperturbation, coupled here with time-resolved resonance Raman spectroscopy (TR(3)), has been used to investigate, for the first time by this technique, the relaxation dynamics in solution on nanosecond and picosecond time scales of low-spin, LS ((1)A) --> high-spin, HS ((5)T) electronic spin-state crossover in these Fe(II) complexes. For the nanosecond experiments, use of a probe wavelength at 321 nm, falling within the pi-pi transition of the polypyridyl backbone of the ligands, enabled the investigation of vibrational modes of both LS and HS isomers, through coupling to spin-state-dependent angle changes of the backbone. Supplementary investigations of the spin-crossover (SCO) equilibrium in homogeneous solution and in colloidal media assisted the assignment of prominent features in the Raman spectra of the LS and HS isomers. The relaxation data from the nanosecond studies confirm and extend earlier spectrophotometric findings, (Schenker, S.; Stein, P. C.; Wolny, J. A.; Brady, C.; McGarvey, J. J.; Toftlund, H.; Hauser, A. Inorg. Chem. 2001, 40, 134), pointing to biphasic spin-state relaxation in the case of [Fe(btpa)](PF(6))(2) but monophasic in the case of [Fe(b(bdpa))](PF(6))(2). The picosecond results suggest an early process complete in 20 ps or less, which is common to both complexes and possibly includes vibrational relaxation in the initially formed (5)T(2) state. 相似文献
19.
Durig JR Drew BR Reese CE Brletic PA 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2000,56(11):2091-2106
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules. 相似文献
20.
Durig JR Hur SW Guirgis GA 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2003,59(11):2449-2471
The infrared spectra (3200-50 cm(-1)) of gaseous and solid and Raman spectra (3200-10 cm(-1)) of the liquid and solid methylvinyl silyl chloride, CH(2)=CHSiH(CH(3))Cl, and the Si-d isotopomer have been recorded. The three expected stable conformers (the three different groups eclipsing the double bond) have been identified in the fluid phase, but it was not possible to obtain an annealed solid with a single conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data the enthalpy differences between the most stable conformer with the hydrogen atom (HE) eclipsing the double bond to that with the chlorine atom (ClE) and the methyl group (ME) eclipsing the double bond have been determined to be 17+/-4 cm(-1) (203+/-48 Jmol(-1)) and 80+/-12 cm(-1) (957+/-144 Jmol(-1)), respectively. However in the liquid state the ME conformer is the most stable form with enthalpy differences of 13+/-4 and 27+/-7 cm(-1) to the HE and ClE rotamers, respectively. It is estimated that there is 39% of the HE conformer, 35% of the ClE conformer, and 26% of the ME conformer present at ambient temperature. A complete vibration assignment is proposed for the HE conformer which is based on infrared band contours and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Additionally, several of the fundamentals for the other two conformers have been assigned. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies are reported for all three conformers from MP2/6-31G(d,p) ab initio calculations with full electron correlation. Optimized geometrical parameters and conformational stabilities have been obtained from MP2/6-311+G(d,p) calculations. At this highest level of calculations, the HE conformer is predicted to be more stable by 62 and 84 cm(-1) than the ME and ClE conformers, respectively. The coefficients from the potential function governing the conformational interchange have been obtained from the MP2/6-31G(d) ab initio calculations. By utilizing the frequency of the SiH stretching mode, the r(0)-H distance has been determined to be 1.481 A for the HE conformer. The ab initio calculated quantities are compared to the experimentally determined values where applicable, as well as to some corresponding results for some similar molecules. 相似文献