首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
We prove a theorem on partitioning point sets inE d (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space,O(n logn) deterministic preprocessing time, andO(n 1?1/d (logn) O(1)) query time. WithO(nlogn) preprocessing time, where δ is an arbitrary positive constant, a more complicated data structure yields query timeO(n 1?1/d (log logn) O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelleet al. [CSW]. The partition result implies that, forr dn 1?δ, a (1/r)-approximation of sizeO(r d) with respect to simplices for ann-point set inE d can be computed inO(n logr) deterministic time. A (1/r)-cutting of sizeO(r d) for a collection ofn hyperplanes inE d can be computed inO(n logr) deterministic time, provided thatrn 1/(2d?1).  相似文献   

2.
We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2 n) time usingO(n 2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n 2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(n d) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.This research was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

3.
This paper presents fast parallel algorithms for the following graph theoretic problems: breadth-depth search of directed acyclic graphs; minimum-depth search of graphs; finding the minimum-weighted paths between all node-pairs of a weighted graph and the critical activities of an activity-on-edge network. The first algorithm hasO(logdlogn) time complexity withO(n 3) processors and the remaining algorithms achieveO(logd loglogn) time bound withO(n 2[n/loglogn]) processors, whered is the diameter of the graph or the directed acyclic graph (which also represents an activity-on-edge network) withn nodes. These algorithms work on an unbounded shared memory model of the single instruction stream, multiple data stream computer that allows both read and write conflicts.  相似文献   

4.
A dynamic data structure is given that maintains the minimal distance in a set ofn points ink-dimensional space inO((logn) k log logn) amortized time per update. The size of the data structure is bounded byO(n(logn) k ). Distances are measured in the MinkowskiL t -metric, where 1 t . This is the first dynamic data structure that maintains the minimal distance in polylogarithmic time for fully on-line updates.This work was supported by the ESPRIT II Basic Research Actions Program, under Contract No. 3075 (project ALCOM).  相似文献   

5.
We present a data structure that can store a set of disjoint fat objects ind-space such that point location and bounded-size range searching with arbitrarily shaped ranges can be performed efficiently. The structure can deal with either arbitrary (fat) convex objects or nonconvex (fat) polytopes. The multipurpose data structure supports point location and range searching queries in timeO(logd−1 n) and requiresO(n logd−1 n) storage, afterO(n logd−1 n log log n) preprocessing. The data structure and query algorithm are rather simple.  相似文献   

6.
We consider the multiple point evaluation problem for an n-dimensional space of functions [???1,1[ d ?? spanned by d-variate basis functions that are the restrictions of simple (say linear) functions to tensor product domains. For arbitrary evaluation points this task is faced in the context of (semi-)Lagrangian schemes using adaptive sparse tensor approximation spaces for boundary value problems in moderately high dimensions. We devise a fast algorithm for performing m?≥?n point evaluations of a function in this space with computational cost O(mlog d n). We resort to nested segment tree data structures built in a preprocessing stage with an asymptotic effort of O(nlog d???1 n).  相似文献   

7.
We consider a collectionH ofn hyperplanes in E d (where the dimensiond is fixed). An ε-cutting forH is a collection of (possibly unbounded)d-dimensional simplices with disjoint interors, which cover all E d and such that the interior of any simplex is intersected by at mostεn hyperplanes ofH. We give a deterministic algorithm for finding a (1/r)-cutting withO(r d ) simplices (which is asymptotically optimal). Forrn 1−σ, where δ>0 is arbitrary but fixed, the running time of this algorithm isO(n(logn) O(1) r d−1). In the plane we achieve a time boundO(nr) forr≤n 1−δ, which is optimal if we also want to compute the collection of lines intersecting each simplex of the cutting. This improves a result of Agarwal, and gives a conceptually simpler algorithm. For ann point setX⊆E d and a parameterr, we can deterministically compute a (1/r)-net of sizeO(rlogr) for the range space (X, {X ϒ R; R is a simplex}), In timeO(n(logn) O(1) r d−1 +r O(1)). The size of the (1/r)-net matches the best known existence result. By a simple transformation, this allows us to find ε-nets for other range spaces usually encountered in computational geometry. These results have numerous applications for derandomizing algorithms in computational geometry without affecting their running time significantly. A preliminary version of this paper appeared inProceedings of the Sixth ACM Symposium on Computational Geometry, Berkeley, 1990, pp. 1–9. Work on this paper was supported by DIMACS Center.  相似文献   

8.
Parallel algorithms for analyzing activity networks are proposed which include feasibility test, topological ordering of the events, and computing the earliest and latest start times for all activities and hence identification of the critical activities of the activity network. The first two algorithms haveO(logn) time complexity and the remaining one achievesO(logd log logn) time bound, whered is the diameter of the digraph representing the activity network withn nodes. All these algorithms work on a CRCW PRAM and requireO(n 3) processors.  相似文献   

9.
The range-searching problems that allow efficient partition trees are characterized as those defined by range spaces of finite Vapnik-Chervonenkis dimension. More generally, these problems are shown to be the only ones that admit linear-size solutions with sublinear query time in the arithmetic model. The proof rests on a characterization of spanning trees with a low stabbing number. We use probabilistic arguments to treat the general case, but we are able to use geometric techniques to handle the most common range-searching problems, such as simplex and spherical range search. We prove that any set ofn points inE d admits a spanning tree which cannot be cut by any hyperplane (or hypersphere) through more than roughlyn 1–1/d edges. This result yields quasi-optimal solutions to simplex range searching in the arithmetic model of computation. We also look at polygon, disk, and tetrahedron range searching on a random access machine. Givenn points inE 2, we derive a data structure of sizeO(n logn) for counting how many points fall inside a query convexk-gon (for arbitrary values ofk). The query time isO(kn logn). Ifk is fixed once and for all (as in triangular range searching), then the storage requirement drops toO(n). We also describe anO(n logn)-size data structure for counting how many points fall inside a query circle inO(n log2 n) query time. Finally, we present anO(n logn)-size data structure for counting how many points fall inside a query tetrahedron in 3-space inO(n 2/3 log2 n) query time. All the algorithms are optimal within polylogarithmic factors. In all cases, the preprocessing can be done in polynomial time. Furthermore, the algorithms can also handle reporting within the same complexity (adding the size of the output as a linear term to the query time).Portions of this work have appeared in preliminary form in Partition trees for triangle counting and other range searching problems (E. Welzl),Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), 23–33, and Tight Bounds on the Stabbing Number of Spanning Trees in Euclidean Space (B. Chazelle), Comput. Sci. Techn. Rep. No. CS-TR-155-88, Princeton University, 1988. Bernard Chazelle acknowledges the National Science Foundation for supporting this research in part under Grant CCR-8700917. Emo Welzl acknowledges the Deutsche Forschungsgemeinschaft for supporting this research in part under Grant We 1265/1-1.  相似文献   

10.
In this paper, we present approximation algorithms for minimum vertex and edge guard problems for polygons with or without holes with a total of n vertices. For simple polygons, approximation algorithms for both problems run in O(n4) time and yield solutions that can be at most O(logn) times the optimal solution. For polygons with holes, approximation algorithms for both problems give the same approximation ratio of O(logn), but the running time of the algorithms increases by a factor of n to O(n5).  相似文献   

11.
In thecollect problem(M. Saks, N. Shavit, and H. Woll,in“Proceedings of the 2nd ACM–SIAM Symposium on Discrete Algorithms, 1991),nprocessors in a shared-memory system must each learn the values ofnregisters. We give a randomized algorithm that solves the collect problem inO(n log3 n) total read and write operations with high probability, even if timing is under the control of a content-oblivious adversary (a slight weakening of the usual adaptive adversary). This improves on both the trivial upper bound ofO(n2) steps and the best previously known bound ofO(n3/2 log n) steps, and is close to the lower bound of Ω(n log n) steps. Furthermore, we show how this algorithm can be used to obtain a multiuse cooperative collect protocol that isO(log3 n)-competitive in the latency model of Ajtaiet al.(“Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science,” 1994); andO(n1/2 log3/2 n)-competitive in the throughput model of Aspnes and Waarts (“Proceedings of the 28th ACM Symposium on Theory of Computing,” 1996). In both cases the competitive ratios are within a polylogarithmic factor of optimal.  相似文献   

12.
《Journal of Complexity》1999,15(1):30-71
We describe fast parallel algorithms for building index data structures that can be used to gather various statistics on square matrices. The main data structure is the Lsuffix tree, which is a generalization of the classical suffix tree for strings. Given ann×ntext matrixA, we build our data structures inO(log n) time withn2processors on a CRCW PRAM, so that we can quickly processAin parallel as follows: (i) report some statistical information aboutA, e.g., find the largest repeated square submatrices that appear at least twice inAor determine, for each position inA, the smallest submatrix that occurs only there; (ii) given, on-line, anm×mpattern matrixPAT, check whether it occurs inA. We refer to the above two kinds of operations as queries and point out that they have applications to visual databases and two-dimensional data compression. Query (i) takesO(log n) time withn2/log nprocessors and query (ii) takesO(log m) time withm2/log mprocessors. The query algorithms are work optimal while the construction algorithm is work optimal only for arbitrary and large alphabets.  相似文献   

13.
We count the number of nonisomorphic geometric minimum spanning trees formed by adding a single point to ann-point set ind-dimensional space, by relating it to a family of convex decompositions of space. TheO(n d log2d 2d n) bound that we obtain significantly improves previously known bounds and is tight to within a polylogarithmic factor. The research of D. Eppstein was performed in part while visiting Xerox PARC.  相似文献   

14.
In dynamic graph algorithms the following provide-or-bound problem has to be solved quickly: Given a set S containing a subset R and a way of generating random elements from S testing for membership in R, either (i) provide an element of R, or (ii) give a (small) upper bound on the size of R that holds with high probability. We give an optimal algorithm for this problem. This algorithm improves the time per operation for various dynamic graph algorithms by a factor of O(log n). For example, it improves the time per update for fully dynamic connectivity from O(log3n) to O(log2n). © 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11 , 369–379 (1997)  相似文献   

15.
In this paper, we consider the updating problems to reconstruct the biconnected-components and to reconstruct the weighted shortest path in response to the topology change of the network. We propose two distributed algorithms. The first algorithm solves the updating problem that reconstructs the biconnected-components after the several processors and links are added and deleted. Its bit complexity is O((n′ +a +d) logn′), its message complexity is O(n′ +a +d), the ideal time complexity isO(n′), and the space complexity isO(e logn +e′ logn′). The second algorithm solves the updating problem that reconstructs the weighted shortest path. Its message complexity and ideal-time complexity areO(u 2 +a +n′) respectively.  相似文献   

16.
A simple parallel randomized algorithm to find a maximal independent set in a graph G = (V, E) on n vertices is presented. Its expected running time on a concurrent-read concurrent-write PRAM with O(|E|dmax) processors is O(log n), where dmax denotes the maximum degree. On an exclusive-read exclusive-write PRAM with O(|E|) processors the algorithm runs in O(log2n). Previously, an O(log4n) deterministic algorithm was given by Karp and Wigderson for the EREW-PRAM model. This was recently (independently of our work) improved to O(log2n) by M. Luby. In both cases randomized algorithms depending on pairwise independent choices were turned into deterministic algorithms. We comment on how randomized combinatorial algorithms whose analysis only depends on d-wise rather than fully independent random choices (for some constant d) can be converted into deterministic algorithms. We apply a technique due to A. Joffe (1974) and obtain deterministic construction in fast parallel time of various combinatorial objects whose existence follows from probabilistic arguments.  相似文献   

17.
Given a set of n points in the plane, two points are said to be rectangularly visible if the orthogonal rectangle with the two points as opposite vertices has no other point of the set in its interior. In this paper it is shown that all pairs of rectangularly visible points in a set of size n can be determined in O(n log n + k) time, where k is the number of reported pairs, using O(n) space. Also, we consider the query problem: Given a set V of points and an arbitrary point p, determine those points in V that are rectangularly visible from p. A dynamic data structure is described that uses O(n log n) space, has a query time of O(k + log2n) and an update time of O(log3 n). Additionally, we extend the results to the 3-dimensional case.  相似文献   

18.
We present two new algorithms, ADT and MDT, for solving order-n Toeplitz systems of linear equations Tz = b in time O(n log2n) and space O(n). The fastest algorithms previously known, such as Trench's algorithm, require time Ω(n2) and require that all principal submatrices of T be nonsingular. Our algorithm ADT requires only that T be nonsingular. Both our algorithms for Toeplitz systems are derived from algorithms for computing entries in the Padé table for a given power series. We prove that entries in the Padé table can be computed by the Extended Euclidean Algorithm. We describe an algorithm EMGCD (Extended Middle Greatest Common Divisor) which is faster than the algorithm HGCD of Aho, Hopcroft and Ullman, although both require time O(n log2n), and we generalize EMGCD to produce PRSDC (Polynomial Remainder Sequence Divide and Conquer) which produces any iterate in the PRS, not just the middle term, in time O(n log2n). Applying PRSDC to the polynomials U0(x) = x2n+1 and U1(x) = a0 + a1x + … + a2nx2n gives algorithm AD (Anti-Diagonal), which computes any (m, p) entry along the antidiagonal m + p = 2n of the Padé table for U1 in time O(n log2n). Our other algorithm, MD (Main-Diagonal), computes any diagonal entry (n, n) in the Padé table for a normal power series, also in time O(n log2n). MD is related to Schönhage's fast continued fraction algorithm. A Toeplitz matrix T is naturally associated with U1, and the (n, n) Padé approximation to U1 gives the first column of T?1. We show how a formula due to Trench can be used to compute the solution z of Tz = b in time O(n log n) from the first row and column of T?1. Thus, the Padé table algorithms AD and MD give O(n log2n) Toeplitz algorithms ADT and MDT. Trench's formula breaks down in certain degenerate cases, but in such cases a companion formula, the discrete analog of the Christoffel-Darboux formula, is valid and may be used to compute z in time O(n log2n) via the fast computation (by algorithm AD) of at most four Padé approximants. We also apply our results to obtain new complexity bounds for the solution of banded Toeplitz systems and for BCH decoding via Berlekamp's algorithm.  相似文献   

19.
We revisit one of the most fundamental classes of data structure problems in computational geometry: range searching. Matoušek (Discrete Comput. Geom. 10:157–182, 1993) gave a partition tree method for d-dimensional simplex range searching achieving O(n) space and O(n 1−1/d ) query time. Although this method is generally believed to be optimal, it is complicated and requires O(n 1+ε ) preprocessing time for any fixed ε>0. An earlier method by Matoušek (Discrete Comput. Geom. 8:315–334, 1992) requires O(nlogn) preprocessing time but O(n 1−1/d log O(1) n) query time. We give a new method that achieves simultaneously O(nlogn) preprocessing time, O(n) space, and O(n 1−1/d ) query time with high probability. Our method has several advantages:
•  It is conceptually simpler than Matoušek’s O(n 1−1/d )-time method. Our partition trees satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all layers, and disjointness of the children’s cells at each node).  相似文献   

20.
We consider the problem: Given a set of n vectors in the d-dimensional Euclidean space, find a subsetmaximizing the length of the sum vector.We propose an algorithm that finds an optimal solution to this problem in time O(nd?1(d + logn)). In particular, if the input vectors lie in a plane then the problem is solvable in almost linear time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号